1887

Abstract

Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium contains two Trxs. TrxA is similar to the well-characterized Trx homologue from and contains the common WCGPC active site motif, while TrxD is atypical and contains an aspartate residue in the active site (WCGDC). To elucidate the physiological roles of the two Trx paralogues, deletion mutants Δ, Δ and ΔΔ were constructed. In general, the ΔΔ strain was significantly more sensitive than either of the Δ and Δ mutants. Upon exposure to oxidative stress, growth of the Δ strain was diminished while that of the Δ mutant was similar to the wild-type. The lack of TrxA also appears to impair methionine sulphoxide reduction. Both Δ and Δ strains displayed growth inhibition after treatment with sodium arsenate and tellurite as compared with the wild-type, suggesting partially overlapping functions of TrxA and TrxD. Overall the phenotype of the Δ mutant matches established functions of WCGPC-type Trx while TrxD appears to play a more restricted role in stress resistance of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000029
2015-03-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/528.html?itemId=/content/journal/micro/10.1099/mic.0.000029&mimeType=html&fmt=ahah

References

  1. Akif M., Khare G., Tyagi A. K., Mande S. C., Sardesai A. A.. ( 2008;). Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. . J Bacteriol 190:, 7087–7095. [CrossRef][PubMed]
    [Google Scholar]
  2. Antelmann H., Helmann J. D.. ( 2011;). Thiol-based redox switches and gene regulation. . Antioxid Redox Signal 14:, 1049–1063. [CrossRef][PubMed]
    [Google Scholar]
  3. Arnér E. S. J., Holmgren A.. ( 2000;). Physiological functions of thioredoxin and thioredoxin reductase. . Eur J Biochem 267:, 6102–6109. [CrossRef][PubMed]
    [Google Scholar]
  4. Berka R. M., Cui X., Yanofsky C.. ( 2003;). Genomewide transcriptional changes associated with genetic alterations and nutritional supplementation affecting tryptophan metabolism in Bacillus subtilis. . Proc Natl Acad Sci U S A 100:, 5682–5687. [CrossRef][PubMed]
    [Google Scholar]
  5. Berridge M. V., Herst P. M., Tan A. S.. ( 2005;). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. . Biotechnol Annu Rev 11:, 127–152. [CrossRef][PubMed]
    [Google Scholar]
  6. Biswas I., Gruss A., Ehrlich S. D., Maguin E.. ( 1993;). High-efficiency gene inactivation and replacement system for gram-positive bacteria. . J Bacteriol 175:, 3628–3635.[PubMed]
    [Google Scholar]
  7. Björnberg O., Efler P., Ebong E. D., Svensson B., Hägglund P.. ( 2014;). Lactococcus lactis TrxD represents a subgroup of thioredoxins prevalent in Gram-positive bacteria containing WCXDC active site motifs. . Arch Biochem Biophys 564:, 164–172. [CrossRef][PubMed]
    [Google Scholar]
  8. Boschi-Muller S., Gand A., Branlant G.. ( 2008;). The methionine sulfoxide reductases: catalysis and substrate specificities. . Arch Biochem Biophys 474:, 266–273. [CrossRef][PubMed]
    [Google Scholar]
  9. Breüner A., Brøndsted L., Hammer K.. ( 2001;). Resolvase-like recombination performed by the TP901-1 integrase. . Microbiology 147:, 2051–2063.[PubMed]
    [Google Scholar]
  10. Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G. M., Carnemolla B., Orecchia P., Zardi L., Righetti P. G.. ( 2004;). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. . Electrophoresis 25:, 1327–1333. [CrossRef][PubMed]
    [Google Scholar]
  11. Comtois S. L., Gidley M. D., Kelly D. J.. ( 2003;). Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. . Microbiology 149:, 121–129. [CrossRef][PubMed]
    [Google Scholar]
  12. Ezraty B., Bos J., Barras F., Aussel L.. ( 2005;). Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. . J Bacteriol 187:, 231–237. [CrossRef][PubMed]
    [Google Scholar]
  13. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B.. ( 1978;). Occurrence of glutathione in bacteria. . J Bacteriol 133:, 1126–1129.[PubMed]
    [Google Scholar]
  14. Ferianc P., Farewell A.. ( 1998;). The cadmium-stress stimulon of Escherichia coli K-12. . Microbiology 144:, 1045–1050. [CrossRef][PubMed]
    [Google Scholar]
  15. Fernándes L., Steele J. L.. ( 1993;). Glutathione content of lactic acid bacteria. . J Dairy Sci 76:, 1233–1242. [CrossRef]
    [Google Scholar]
  16. Gasson M. J.. ( 1983;). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. . J Bacteriol 154:, 1–9.[PubMed]
    [Google Scholar]
  17. Gobom J., Nordhoff E., Mirgorodskaya E., Ekman R., Roepstorff P.. ( 1999;). Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. . J Mass Spectrom 34:, 105–116. [CrossRef][PubMed]
    [Google Scholar]
  18. Grimaud R., Ezraty B., Mitchell J. K., Lafitte D., Briand C., Derrick P. J., Barras F.. ( 2001;). Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. . J Biol Chem 276:, 48915–48920. [CrossRef][PubMed]
    [Google Scholar]
  19. Hansen J. M., Zhang H., Jones D. P.. ( 2006;). Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. . Free Radic Biol Med 40:, 138–145. [CrossRef][PubMed]
    [Google Scholar]
  20. Hofmann B., Hecht H. J., Flohé L.. ( 2002;). Peroxiredoxins. . Biol Chem 383:, 347–364. [CrossRef][PubMed]
    [Google Scholar]
  21. Huebner K., Saldivar J. C., Sun J., Shibata H., Druck T.. ( 2011;). Hits, Fhits and Nits: beyond enzymatic function. . Adv Enzyme Regul 51:, 208–217. [CrossRef][PubMed]
    [Google Scholar]
  22. Hughes M. F.. ( 2002;). Arsenic toxicity and potential mechanisms of action. . Toxicol Lett 133:, 1–16. [CrossRef][PubMed]
    [Google Scholar]
  23. Imlay J. A.. ( 2003;). Pathways of oxidative damage. . Annu Rev Microbiol 57:, 395–418. [CrossRef][PubMed]
    [Google Scholar]
  24. Jensen P. R., Hammer K.. ( 1993;). Minimal requirements for exponential growth of Lactococcus lactis. . Appl Environ Microbiol 59:, 4363–4366.[PubMed]
    [Google Scholar]
  25. Ji G., Silver S.. ( 1992;). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. . Proc Natl Acad Sci U S A 89:, 9474–9478. [CrossRef][PubMed]
    [Google Scholar]
  26. Jordan A., Pontis E., Åslund F., Hellman U., Gibert I., Reichard P.. ( 1996;). The ribonucleotide reductase system of Lactococcus lactis. Characterization of an NrdEF enzyme and a new electron transport protein. . J Biol Chem 271:, 8779–8785. [CrossRef][PubMed]
    [Google Scholar]
  27. Jordan A., Åslund F., Pontis E., Reichard P., Holmgren A.. ( 1997;). Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile. . J Biol Chem 272:, 18044–18050. [CrossRef][PubMed]
    [Google Scholar]
  28. Kawai Y., Moriya S., Ogasawara N.. ( 2003;). Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. . Mol Microbiol 47:, 1113–1122. [CrossRef][PubMed]
    [Google Scholar]
  29. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S.. & other authors ( 2003;). Essential Bacillus subtilis genes. . Proc Natl Acad Sci U S A 100:, 4678–4683. [CrossRef][PubMed]
    [Google Scholar]
  30. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A.. & other authors ( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature 390:, 249–256. [CrossRef][PubMed]
    [Google Scholar]
  31. Laurent T. C., Moore E. C., Reichard P.. ( 1964;). Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. . J Biol Chem 239:, 3436–3444.[PubMed]
    [Google Scholar]
  32. Lee S. Y., Song J. Y., Kwon E. S., Roe J. H.. ( 2008;). Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. . Biochem Biophys Res Commun 367:, 67–71. [CrossRef][PubMed]
    [Google Scholar]
  33. Lemire J. A., Harrison J. J., Turner R. J.. ( 2013;). Antimicrobial activity of metals: mechanisms, molecular targets and applications. . Nat Rev Microbiol 11:, 371–384. [CrossRef][PubMed]
    [Google Scholar]
  34. Lewis J. P., Iyer D., Anaya-Bergman C.. ( 2009;). Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate. . Microbiology 155:, 3758–3774. [CrossRef][PubMed]
    [Google Scholar]
  35. Li Y., Hugenholtz J., Abee T., Molenaar D.. ( 2003;). Glutathione protects Lactococcus lactis against oxidative stress. . Appl Environ Microbiol 69:, 5739–5745. [CrossRef][PubMed]
    [Google Scholar]
  36. Lillig C. H., Berndt C., Holmgren A.. ( 2008;). Glutaredoxin systems. . Biochim Biophys Acta 1780:, 1304–1317. [CrossRef][PubMed]
    [Google Scholar]
  37. Lu J., Holmgren A.. ( 2014;). The thioredoxin antioxidant system. . Free Radic Biol Med 66:, 75–87. [CrossRef][PubMed]
    [Google Scholar]
  38. Majumder A., Sultan A., Jersie-Christensen R. R., Ejby M., Schmidt B. G., Lahtinen S. J., Jacobsen S., Svensson B.. ( 2011;). Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol. . Proteomics 11:, 3470–3481. [CrossRef][PubMed]
    [Google Scholar]
  39. Messens J., Silver S.. ( 2006;). Arsenate reduction: thiol cascade chemistry with convergent evolution. . J Mol Biol 362:, 1–17. [CrossRef][PubMed]
    [Google Scholar]
  40. Miranda-Vizuete A., Damdimopoulos A. E., Gustafsson J., Spyrou G.. ( 1997;). Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. . J Biol Chem 272:, 30841–30847. [CrossRef][PubMed]
    [Google Scholar]
  41. Möller M. C., Hederstedt L.. ( 2008;). Extracytoplasmic processes impaired by inactivation of trxA (thioredoxin gene) in Bacillus subtilis. . J Bacteriol 190:, 4660–4665. [CrossRef][PubMed]
    [Google Scholar]
  42. Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C.. ( 1996;). Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. . J Bacteriol 178:, 1990–1995.[PubMed]
    [Google Scholar]
  43. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C.. ( 2009;). Bacillithiol is an antioxidant thiol produced in Bacilli. . Nat Chem Biol 5:, 625–627. [CrossRef][PubMed]
    [Google Scholar]
  44. Nguyen T. T., Eiamphungporn W., Mäder U., Liebeke M., Lalk M., Hecker M., Helmann J. D., Antelmann H.. ( 2009;). Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR). . Mol Microbiol 71:, 876–894. [CrossRef][PubMed]
    [Google Scholar]
  45. Nishizaki M., Sasaki J., Fang B., Atkinson E. N., Minna J. D., Roth J. A., Ji L.. ( 2004;). Synergistic tumor suppression by coexpression of FHIT and p53 coincides with FHIT-mediated MDM2 inactivation and p53 stabilization in human non-small cell lung cancer cells. . Cancer Res 64:, 5745–5752. [CrossRef][PubMed]
    [Google Scholar]
  46. Pan Y. R., Lou Y. C., Seven A. B., Rizo J., Chen C.. ( 2011;). NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae. . J Mol Biol 405:, 1188–1201. [CrossRef][PubMed]
    [Google Scholar]
  47. Pérez J. M., Calderón I. L., Arenas F. A., Fuentes D. E., Pradenas G. A., Fuentes E. L., Sandoval J. M., Castro M. E., Elías A. O., Vásquez C. C.. ( 2007;). Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. . PLoS ONE 2:, e211. [CrossRef][PubMed]
    [Google Scholar]
  48. Reott M. A., Parker A. C., Rocha E. R., Smith C. J.. ( 2009;). Thioredoxins in redox maintenance and survival during oxidative stress of Bacteroides fragilis. . J Bacteriol 191:, 3384–3391. [CrossRef][PubMed]
    [Google Scholar]
  49. Ritz D., Patel H., Doan B., Zheng M., Åslund F., Storz G., Beckwith J.. ( 2000;). Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli. . J Biol Chem 275:, 2505–2512. [CrossRef][PubMed]
    [Google Scholar]
  50. Sambrook J., Russell D.. ( 2001;). Molecular Cloning – A Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  51. Scharf C., Riethdorf S., Ernst H., Engelmann S., Völker U., Hecker M.. ( 1998;). Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. . J Bacteriol 180:, 1869–1877.[PubMed]
    [Google Scholar]
  52. Schroeter R., Voigt B., Jürgen B., Methling K., Pöther D. C., Schäfer H., Albrecht D., Mostertz J., Mäder U.. & other authors ( 2011;). The peroxide stress response of Bacillus licheniformis. . Proteomics 11:, 2851–2866. [CrossRef][PubMed]
    [Google Scholar]
  53. Scott C., Rawsthorne H., Upadhyay M., Shearman C. A., Gasson M. J., Guest J. R., Green J.. ( 2000;). Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. . FEMS Microbiol Lett 192:, 85–89. [CrossRef][PubMed]
    [Google Scholar]
  54. Seefeldt K. E., Weimer B. C.. ( 2000;). Diversity of sulfur compound production in lactic acid bacteria. . J Dairy Sci 83:, 2740–2746. [CrossRef][PubMed]
    [Google Scholar]
  55. Serata M., Iino T., Yasuda E., Sako T.. ( 2012;). Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. . Microbiology 158:, 953–962. [CrossRef][PubMed]
    [Google Scholar]
  56. Smith J. J., McFeters G. A.. ( 1996;). Effects of substrates and phosphate on INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli. . J Appl Bacteriol 80:, 209–215. [CrossRef][PubMed]
    [Google Scholar]
  57. Stillman T. J., Upadhyay M., Norte V. A., Sedelnikova S. E., Carradus M., Tzokov S., Bullough P. A., Shearman C. A., Gasson M. J.. & other authors ( 2005;). The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. . Mol Microbiol 57:, 1101–1112. [CrossRef][PubMed]
    [Google Scholar]
  58. Tachon S., Michelon D., Chambellon E., Cantonnet M., Mezange C., Henno L., Cachon R., Yvon M.. ( 2009;). Experimental conditions affect the site of tetrazolium violet reduction in the electron transport chain of Lactococcus lactis. . Microbiology 155:, 2941–2948. [CrossRef][PubMed]
    [Google Scholar]
  59. Turner R. J., Hou Y., Weiner J. H., Taylor D. E.. ( 1992;). The arsenical ATPase efflux pump mediates tellurite resistance. . J Bacteriol 174:, 3092–3094.[PubMed]
    [Google Scholar]
  60. Turner M. S., Tan Y. P., Giffard P. M.. ( 2007;). Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. . Appl Environ Microbiol 73:, 6144–6149. [CrossRef][PubMed]
    [Google Scholar]
  61. Uziel O., Borovok I., Schreiber R., Cohen G., Aharonowitz Y.. ( 2004;). Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. . J Bacteriol 186:, 326–334. [CrossRef][PubMed]
    [Google Scholar]
  62. Vido K., Spector D., Lagniel G., Lopez S., Toledano M. B., Labarre J.. ( 2001;). A proteome analysis of the cadmium response in Saccharomyces cerevisiae. . J Biol Chem 276:, 8469–8474. [CrossRef][PubMed]
    [Google Scholar]
  63. Vido K., Le Bars D., Mistou M. Y., Anglade P., Gruss A., Gaudu P.. ( 2004;). Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. . J Bacteriol 186:, 1648–1657. [CrossRef][PubMed]
    [Google Scholar]
  64. Vido K., Diemer H., Van Dorsselaer A., Leize E., Juillard V., Gruss A., Gaudu P.. ( 2005;). Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. . J Bacteriol 187:, 601–610. [CrossRef][PubMed]
    [Google Scholar]
  65. Wessel D., Flügge U. I.. ( 1984;). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. . Anal Biochem 138:, 141–143. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000029
Loading
/content/journal/micro/10.1099/mic.0.000029
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error