1887

Abstract

The bacterium RHA1 synthesizes large amounts of triacylglycerols (TAGs) under conditions of nitrogen starvation. To better understand the molecular mechanisms behind this process, we performed proteomic studies in this oleaginous bacterium. Upon nitrogen starvation, we observed a re-routing of the carbon flux towards the formation of TAGs. Under these conditions, the cellular lipid content made up more than half of the cell’s dry weight. On the proteome level, this coincided with a shift towards non-glycolytic carbohydrate-metabolizing pathways. These pathways (Entner–Doudoroff and pentose-phosphate shunt) contribute NADPH and precursors of glycerol 3-phosphate and acetyl-CoA to lipogenesis. The expression of proteins involved in the degradation of branched-chain amino acids and the methylmalonyl-CoA pathway probably provided propionyl-CoA for the biosynthesis of odd-numbered fatty acids, which make up almost 30 % of RHA1 fatty acid composition. Additionally, lipolytic and glycerol-degrading enzymes increased in abundance, suggesting a dynamic cycling of cellular lipids. Conversely, abundance of proteins involved in consuming intermediates of lipogenesis decreased. Furthermore, we identified another level of lipogenesis regulation through redox-mediated thiol modification in . Enzymes affected included acetyl-CoA carboxylase and a β-ketoacyl-[acyl-carrier protein] synthase II (FabF). An integrative metabolic model for the oleaginous RHA1 strain is proposed on the basis of our results.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000028
2015-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/593.html?itemId=/content/journal/micro/10.1099/mic.0.000028&mimeType=html&fmt=ahah

References

  1. Alvarez H. M., Steinbüchel A.. ( 2010;). Physiology, biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. . In Biology of Rhodococcus (Microbiology Monographs vol. 16), pp. 263–290. Edited by Alvarez H. M... Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  2. Alvarez H. M., Mayer F., Fabritius D., Steinbüchel A.. ( 1996;). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. . Arch Microbiol 165:, 377–386. [CrossRef][PubMed]
    [Google Scholar]
  3. Alvarez H. M., Kalscheuer R., Steinbüchel A.. ( 1997;). Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. . Fett/Lipid 99:, 239–246. [CrossRef]
    [Google Scholar]
  4. Alvarez H. M., Kalscheuer R., Steinbüchel A.. ( 2000;). Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. . Appl Microbiol Biotechnol 54:, 218–223. [CrossRef][PubMed]
    [Google Scholar]
  5. Alvarez H. M., Silva R. A., Cesari A. C., Zamit A. L., Peressutti S. R., Reichelt R., Keller U., Malkus U., Rasch C.. & other authors ( 2004;). Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. . FEMS Microbiol Ecol 50:, 75–86. [CrossRef][PubMed]
    [Google Scholar]
  6. Alvarez A. F., Alvarez H. M., Kalscheuer R., Wältermann M., Steinbüchel A.. ( 2008;). Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. . Microbiology 154:, 2327–2335. [CrossRef][PubMed]
    [Google Scholar]
  7. Alvarez H. M., Silva R. A., Herrero M., Hernández M. A., Villalba M. S.. ( 2012;). Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. . J Mol Biochem 2:, 69–78.
    [Google Scholar]
  8. Amin R., Reuther J., Bera A., Wohlleben W., Mast Y.. ( 2012;). A novel GlnR target gene, nnaR, is involved in nitrate/nitrite assimilation in Streptomyces coelicolor. . Microbiology 158:, 1172–1182. [CrossRef][PubMed]
    [Google Scholar]
  9. Azimi I., Wong J. W., Hogg P. J.. ( 2011;). Control of mature protein function by allosteric disulfide bonds. . Antioxid Redox Signal 14:, 113–126. [CrossRef][PubMed]
    [Google Scholar]
  10. Barney B. M., Wahlen B. D., Garner E., Wei J., Seefeldt L. C.. ( 2012;). Differences in substrate specificities of five bacterial wax ester synthases. . Appl Environ Microbiol 78:, 5734–5745. [CrossRef][PubMed]
    [Google Scholar]
  11. Barton M. D., Petronio M., Giarrizzo J. G., Bowling B. V., Barton H. A.. ( 2013;). The genome of Pseudomonas fluorescens strain R124 demonstrates phenotypic adaptation to the mineral environment. . J Bacteriol 195:, 4793–4803. [CrossRef][PubMed]
    [Google Scholar]
  12. Bequer Urbano S., Albarracín V. H., Ordoñez O. F., Farías M. E., Alvarez H. M.. ( 2013;). Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. . Extremophiles 17:, 217–227. [CrossRef][PubMed]
    [Google Scholar]
  13. Bhatt A., Molle V., Besra G. S., Jacobs W. R. Jr, Kremer L.. ( 2007;). The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. . Mol Microbiol 64:, 1442–1454. [CrossRef][PubMed]
    [Google Scholar]
  14. Brandes N., Rinck A., Leichert L. I., Jakob U.. ( 2007;). Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. . Mol Microbiol 66:, 901–914. [CrossRef][PubMed]
    [Google Scholar]
  15. Brandes N., Reichmann D., Tienson H., Leichert L. I., Jakob U.. ( 2011;). Using quantitative redox proteomics to dissect the yeast redoxome. . J Biol Chem 286:, 41893–41903. [CrossRef][PubMed]
    [Google Scholar]
  16. Chen B. S., Otten L. G., Resch V., Muyzer G., Hanefeld U.. ( 2013;). Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895. . Stand Genomic Sci 9:, 175–184. [CrossRef][PubMed]
    [Google Scholar]
  17. Chen Y., Ding Y., Yang L., Yu J., Liu G., Wang X., Zhang S., Yu D., Song L.. & other authors ( 2014;). Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. . Nucleic Acids Res 42:, 1052–1064. [CrossRef][PubMed]
    [Google Scholar]
  18. Chubukov V., Gerosa L., Kochanowski K., Sauer U.. ( 2014;). Coordination of microbial metabolism. . Nat Rev Microbiol 12:, 327–340. [CrossRef][PubMed]
    [Google Scholar]
  19. Cox J., Mann M.. ( 2008;). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. . Nat Biotechnol 26:, 1367–1372. [CrossRef][PubMed]
    [Google Scholar]
  20. Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M.. ( 2011;). Andromeda: a peptide search engine integrated into the MaxQuant environment. . J Proteome Res 10:, 1794–1805. [CrossRef][PubMed]
    [Google Scholar]
  21. Desvergne B., Michalik L., Wahli W.. ( 2006;). Transcriptional regulation of metabolism. . Physiol Rev 86:, 465–514. [CrossRef][PubMed]
    [Google Scholar]
  22. Ding Y., Yang L., Zhang S., Wang Y., Du Y., Pu J., Peng G., Chen Y., Zhang H.. & other authors ( 2012;). Identification of the major functional proteins of prokaryotic lipid droplets. . J Lipid Res 53:, 399–411. [CrossRef][PubMed]
    [Google Scholar]
  23. Feisthauer S., Wick L. Y., Kästner M., Kaschabek S. R., Schlömann M., Richnow H. H.. ( 2008;). Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. . Environ Microbiol 10:, 1641–1651. [CrossRef][PubMed]
    [Google Scholar]
  24. Fisher S. H.. ( 1999;). Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol 32:, 223–232. [CrossRef][PubMed]
    [Google Scholar]
  25. Gago G., Diacovich L., Arabolaza A., Tsai S. C., Gramajo H.. ( 2011;). Fatty acid biosynthesis in actinomycetes. . FEMS Microbiol Rev 35:, 475–497. [CrossRef][PubMed]
    [Google Scholar]
  26. Geigenberger P., Kolbe A., Tiessen A.. ( 2005;). Redox regulation of carbon storage and partitioning in response to light and sugars. . J Exp Bot 56:, 1469–1479. [CrossRef][PubMed]
    [Google Scholar]
  27. Hanson R. W., Reshef L.. ( 2003;). Glyceroneogenesis revisited. . Biochimie 85:, 1199–1205. [CrossRef][PubMed]
    [Google Scholar]
  28. Hernández M. A., Mohn W. W., Martínez E., Rost E., Alvarez A. F., Alvarez H. M.. ( 2008;). Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. . BMC Genomics 9:, 600. [CrossRef][PubMed]
    [Google Scholar]
  29. Hernández M. A., Arabolaza A., Rodríguez E., Gramajo H., Alvarez H. M.. ( 2013;). The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. . Appl Microbiol Biotechnol 97:, 2119–2130. [CrossRef][PubMed]
    [Google Scholar]
  30. Hernández M. A., Comba S., Arabolaza A., Gramajo H., Alvarez H. M.. ( 2014;). Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerols production in oleaginous Rhodococcus strains. . Appl. Microbiol. Biotechnol. [CrossRef]
    [Google Scholar]
  31. Iddar A., Valverde F., Assobhei O., Serrano A., Soukri A.. ( 2005;). Widespread occurrence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase among gram-positive bacteria. . Int Microbiol 8:, 251–258.[PubMed]
    [Google Scholar]
  32. Kumsta C., Thamsen M., Jakob U.. ( 2011;). Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. . Antioxid Redox Signal 14:, 1023–1037. [CrossRef][PubMed]
    [Google Scholar]
  33. Le Bihan T., Rayner J., Roy M. M., Spagnolo L.. ( 2013;). Photobacterium profundum under pressure: a MS-based label-free quantitative proteomics study. . PLoS ONE 8:, e60897. [CrossRef][PubMed]
    [Google Scholar]
  34. LeBlanc J. C., Gonçalves E. R., Mohn W. W.. ( 2008;). Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. . Appl Environ Microbiol 74:, 2627–2636. [CrossRef][PubMed]
    [Google Scholar]
  35. Leichert L. I.. ( 2011;). Proteomic methods unravel the protein quality control in Escherichia coli. . Proteomics 11:, 3023–3035. [CrossRef][PubMed]
    [Google Scholar]
  36. Leichert L. I., Gehrke F., Gudiseva H. V., Blackwell T., Ilbert M., Walker A. K., Strahler J. R., Andrews P. C., Jakob U.. ( 2008;). Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. . Proc Natl Acad Sci U S A 105:, 8197–8202. [CrossRef][PubMed]
    [Google Scholar]
  37. Liang M. H., Jiang J. G.. ( 2013;). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. . Prog Lipid Res 52:, 395–408. [CrossRef][PubMed]
    [Google Scholar]
  38. Lindemann C., Leichert L. I.. ( 2012;). Quantitative redox proteomics: the NOxICAT method. . Methods Mol Biol 893:, 387–403. [CrossRef][PubMed]
    [Google Scholar]
  39. Lindemann C., Lupilova N., Müller A., Warscheid B., Meyer H. E., Kuhlmann K., Eisenacher M., Leichert L. I.. ( 2013;). Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. . J Biol Chem 288:, 19698–19714. [CrossRef][PubMed]
    [Google Scholar]
  40. Liu X., Hu Y., Pai P. J., Chen D., Lam H.. ( 2014;). Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. . J Proteome Res 13:, 1223–1233. [CrossRef][PubMed]
    [Google Scholar]
  41. MacEachran D. P., Sinskey A. J.. ( 2013;). The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. . Microb Cell Fact 12:, 104. [CrossRef][PubMed]
    [Google Scholar]
  42. MacEachran D. P., Prophete M. E., Sinskey A. J.. ( 2010;). The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. . Appl Environ Microbiol 76:, 7217–7225. [CrossRef][PubMed]
    [Google Scholar]
  43. McLeod M. P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L.. & other authors ( 2006;). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. . Proc Natl Acad Sci U S A 103:, 15582–15587. [CrossRef][PubMed]
    [Google Scholar]
  44. Mráček T., Drahota Z., Houštěk J.. ( 2013;). The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. . Biochim Biophys Acta 1827:, 401–410. [CrossRef][PubMed]
    [Google Scholar]
  45. Müller A., Hoffmann J. H., Meyer H. E., Narberhaus F., Jakob U., Leichert L. I.. ( 2013;). Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. . J Bacteriol 195:, 2807–2816. [CrossRef][PubMed]
    [Google Scholar]
  46. Ofer N., Wishkautzan M., Meijler M., Wang Y., Speer A., Niederweis M., Gur E.. ( 2012;). Ectoine biosynthesis in Mycobacterium smegmatis. . Appl Environ Microbiol 78:, 7483–7486. [CrossRef][PubMed]
    [Google Scholar]
  47. Reshetnikov A. S., Khmelenina V. N., Mustakhimov I. I., Kalyuzhnaya M., Lidstrom M., Trotsenko Y. A.. ( 2011;). Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. . Extremophiles 15:, 653–663. [CrossRef][PubMed]
    [Google Scholar]
  48. Schlegel H. G., Kaltwasser H., Gottschalk G.. ( 1961;). [A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies]. . Arch Mikrobiol 38:, 209–222 (in German). [CrossRef][PubMed]
    [Google Scholar]
  49. Smith S., Witkowski A., Joshi A. K.. ( 2003;). Structural and functional organization of the animal fatty acid synthase. . Prog Lipid Res 42:, 289–317. [CrossRef][PubMed]
    [Google Scholar]
  50. Sutcliffe I. C., Brown A. K., Dover L. G.. ( 2010;). The rhodococcal cell envelope: composition, organisation and biosynthesis. . In Biology of Rhodococcus (Microbiology Monographs vol. 16), pp. 29–71. Edited by Alvarez H. M... Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  51. Villalba M. S., Alvarez H. M.. ( 2014;). Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. . Microbiology 160:, 1523–1532. [CrossRef][PubMed]
    [Google Scholar]
  52. Villalba M. S., Hernández M. A., Silva R. A., Alvarez H. M.. ( 2013;). Genome sequences of triacylglycerol metabolism in Rhodococcus as a platform for comparative genomics. . J Mol Biochem 2:, 94–105.
    [Google Scholar]
  53. Vorapreeda T., Thammarongtham C., Cheevadhanarak S., Laoteng K.. ( 2012;). Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. . Microbiology 158:, 217–228. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000028
Loading
/content/journal/micro/10.1099/mic.0.000028
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error