1887

Abstract

possesses regulatory mechanisms that coordinate cell growth with the synthesis of essential macromolecules (protein, RNA and DNA). While fundamental differences have been identified in the growth habit and chromosome structure of and little is known about these regulatory mechanisms in filamentous bacteria. This paper reports on the relationship between the macromolecule content of A3(2) and its specific growth rate. The protein, RNA and DNA contents (g per 100 g biomass) of A3(2) grown in steady-state continuous culture over a range of specific growth rates (0·025–0·3 h) were 31–45, 10–22 and 3·5–4·5% (w/w), respectively. This composition is qualitatively similar to that of other microorganisms. Changes in the macromolecular content of A3(2) and B/r with specific growth rate appear to be essentially similar. However, the data indicate that the RNA content of A3(2), grown under the conditions used, exceeds that of grown at the same specific growth rate. The data also suggest that overlapping rounds of replication are not a feature of DNA synthesis in A3(2). This may be a function of the organism’s low maximum specific growth rate. Alternatively, it may be a consequence of regulatory mechanisms which act to inhibit the initiation of DNA synthesis in a linear chromosome which is already undergoing replication.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-1927
1996-08-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-1927.html?itemId=/content/journal/micro/10.1099/13500872-142-8-1927&mimeType=html&fmt=ahah

References

  1. Bremer H., Churchward G. 1991; Control of cyclic chromosome-replication in Escherichia coli . Microbiol Rev 55:459–475
    [Google Scholar]
  2. Bremer H., Dennis P.P. 1987; Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1527–1542 Niedhardt F.C., Ingraham J.L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H.E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Burton K. 1956; A study of the conditions and mechanisms of the diphenylamine reaction for colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–322
    [Google Scholar]
  4. Calcutt M.J. 1994; Gene organization in the dnaA-gyrA region of the Streptomyces coelicolor chromosome. Gene 151:23–28
    [Google Scholar]
  5. Calcutt M.J., Schmidt F.J. 1992; Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacterial 174:3220–3226
    [Google Scholar]
  6. Caldwell I.Y., Trinci A.P.J. 1973; The growth unit of the mould Geotrichum candidum . Arch Microbiol 88:1–10
    [Google Scholar]
  7. Campbell A. 1957; Synchronization of cell division. Bacteriol Rev 21:263
    [Google Scholar]
  8. Champness W.C., chater K.F. 1994; Regulation and integration of antibiotic production and morphological differentiation in Streptomyces species. In Regulation of Bacterial Dijferentiation pp. 61–93 Piggot P., Moran C.P., Youngman P. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Chater K.F. 1992; Genetic regulation of secondary metabolic pathways in Streptomyces . In Secondary Metabolites: Their Function and Evolution Ciba Foundation Symposium 171 pp. 144–162 Chadwick D.J., Whelan J. Edited by Chichester: Wiley;
    [Google Scholar]
  10. Chater K.F., Bibb M.J. 1996; Regulation of bacterial antibiotic production. In Biotechnology: Products of Secondary Metabolism 7 Kleinkauf H., von Dohren H. Edited by Weinheim: VCH; in press
    [Google Scholar]
  11. Churchward G., Estiva E., Bremer H. 1981; Growth rate dependent control of chromosome replication initiation in Escherichia coli . J Bacteriol 145:1232–1238
    [Google Scholar]
  12. Churchward G., Bremer H., Young R. 1982; Macromolecular composition of bacteria. J Theor Biol 94:651–670
    [Google Scholar]
  13. Cole S.T., Saint Girons I. 1994; Bacterial genomics. FEMS Microbiol Rev 14:139–160
    [Google Scholar]
  14. Coverly D., Laskey R.A. 1994; Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776
    [Google Scholar]
  15. Demain A.L. 1989; Carbon source regulation of idiolite biosynthesis in Actinomycetes. In Regulation of Secondary Metabolism pp. 127–134 Shapiro S. Edited by Boca Raton, FL: CRC Press;
    [Google Scholar]
  16. Demain A.L., Aharonowitz Y., Martin J.F. 1983; Metabolic control of secondary metabolite pathways. In Biochemistry and Genetic Regulation of Commercially Important Antibiotics pp. 49–72 Vining L.C., Bhattacharya SK. Edited by Reading, MA: Addison-Wesley;
    [Google Scholar]
  17. Esener A.A., Roels J.A., Kossen N.W.F., Roozenburg J.W.H. 1981; Description of microbial growth behaviour during the wash-out phase; determination of the maximum specific growth rate. Eur J Appl Microbiol Biotecbnol 13:141–144
    [Google Scholar]
  18. Gladek A., Zakrzewska J. 1984; Genome size of Streptomyces. FEMS Microbiol Eett 24:73–76
    [Google Scholar]
  19. Herbert D., Phipps P.J., Strange R.E. 1971; Chemical analysis of microbial cells. Methods Microbiol 5B:209–344
    [Google Scholar]
  20. Hobbs G., Frazer C.M., Gardner D.C.J., Cullum J.A., Oliver S.G. 1989; Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotecbnol 31:272–277
    [Google Scholar]
  21. Hobbs G., Frazer C.M., Gardner D.C.J., Flett F., Oliver S.G.. 1990; Pigmented antibiotic production by Streptomyces coelicolor A3(2-kinetics and the influence of nutrients. J Gen Microbiol 136:2291–2296
    [Google Scholar]
  22. Hobbs G., Obanye A.I.C., Petty J., Mason J.C., Barratt E., Gardner D.C.J., Flett F., Smith C.P., Broda P., Oliver S.G. 1992; An integrated approach to studying regulation of production of the antibiotic methylenomycin by Streptomyces coelicolor A3(2). J Bacterial 174:1487–1494
    [Google Scholar]
  23. Hodgson D.A. 1982; Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol 128:2417–2430
    [Google Scholar]
  24. Hopwood D.A. 1959; Linkage and the mechanism of recombination in Streptomyces coelicolor . Ann NY Acad Sci 81:887–898
    [Google Scholar]
  25. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  26. Horinouchi S., Beppu T. 1992; Autoregulatory factors and communication in Actinomycetes. Annu Rev Microbiol 46:377–398
    [Google Scholar]
  27. Jensen K.F., Pederson S. 1990; Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol Rev 54:89–100
    [Google Scholar]
  28. Jinks-Robertson S., Nomura M. 1987; Ribosomes and tRNA. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 797–806 Neidhardt F.C., Ingraham J.L., Brooks Low K., Magasanik E., Schaechter M., Umbarger H.E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Kieser H.M., Kieser T., Hopwood D.A. 1992; A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 174:5496–5507
    [Google Scholar]
  30. Kretschmer S. 1982; Dependence of the mycelial growth pattern on the individual regulated cell cycle in Streptomyces granaticolor . Z Allg Mikrobiol 22:335–347
    [Google Scholar]
  31. Leblond P., Redenbach M., Cullum J. 1993; Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain. Streptomyces coelicolor A3(2).J Bacteriol 175:3422–3429
    [Google Scholar]
  32. Levine A., Vannier F., Dehbi M., Henckes G., Sebor S.J. 1991; The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli . J Mol Biol 219:605–613
    [Google Scholar]
  33. Levine A., Autret S., Seror S.J. 1995; A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the stringent response in Bacillus subtilis . Mol Microbiol 15:287–295
    [Google Scholar]
  34. Li J.J., Deshaies R.J. 1993; Exercising self-restraint: discouraging illicit acts of S and M in eukaryotes. Cell 74:223–226
    [Google Scholar]
  35. Lin Y.S., Kiesre H.M., Hopwood D.A., Chen C.W. 1993; The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10:923–933
    [Google Scholar]
  36. Maaløe O. 1969; An analysis of bacterial growth. Dev Biol Suppl 3:33–58
    [Google Scholar]
  37. Marr A.G. 1991; Growth rate of Escherichia coli . Microbiol Rev 55:316–333
    [Google Scholar]
  38. Martin J.F. 1989; Molecular mechanisms for the control by phosphate of the biosynthesis of antibiotics and other secondary metabolites. In Regulation of Seconday Metabolism pp. 213–238 Shapiro S., Bhattacharya SK. Edited by Boca Raton, FL: CRC Press;
    [Google Scholar]
  39. von Meyenburg K., Hansen F.G. 1987; Regulation of chromosome replication. In Escherichia coli and Salmonella pphi- murimz: Cellular and Molecalar Biology pp. 797–806 Neidhardt F.C., Ingraham J.L., Brooks Low K., Magasanik K., Schaechter M., Umbarger H.E. Edited by Washington DC: American Society for Microbiology;
    [Google Scholar]
  40. Miguélez E.M., Martin M.C., Manzanal M.B., Hardisson C. 1988; Hyphal growth in Streptomyces . In Biology of Actinomycetes 88 pp. 490–495 Okami Y., Beppu T., Caldwell I.Y., Ugawara H. Edited by Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  41. Musialowski M.S., Flett F., Scott G.B., Hobbs G., Smith C.P., Oliver S.G. 1994; Functional evidence that the principal DNA- replication origin of the Streptomyces coelicolor chromosome is close to the dnaA-gyrB region. J Bacteriol 176:5123–5125
    [Google Scholar]
  42. Neidhardt F.C., Ingraham J.L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H.E. 1987 Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: American Society for Microbiology;
    [Google Scholar]
  43. Nierlich D.P. 1972; Regulation of ribonuleic acid synthesis in growing bacterial cells.II.Control over the composition of newly made RNA. J Mol Biol 72:765–777
    [Google Scholar]
  44. Ochi K. 1987; Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus : significance of the stringent response (ppGpp) and GTP content in relation to A- factor. J Bacteriol 169:3608–3616
    [Google Scholar]
  45. Ozergin-Ulgen K., Mavituna F. 1993; Actinorhodin production by Streptomyces coelicolor A3(2) — kinetic-parameters related to growth, substrate uptake and production. Appl Microbiol Biotecbnol 40:457–462
    [Google Scholar]
  46. Prosser J.I., Tough A.J. 1991; Growth mechanisms and growth-kinetics of filamentous microorganisms. Crit Rev Biotecbnol 10:253–274
    [Google Scholar]
  47. Riesenberg D., Bergter F. 1979; Dependence of macromolecular composition and morphology of Streptomyces hygroscopicus on specific growth rate. Z Allg Mikrobiol 19:415–430
    [Google Scholar]
  48. Schaechter E., Maaløe O., Kjeldgaard N.O. 1958; Dependence on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium . J Gen Microbiol 19:592–606
    [Google Scholar]
  49. Shahab N., Kamaruddin K., Platt J., Butler P.R., Oliver S.G., Hobbs G. 1994; Cell physiology and antibiotic production of Streptomyces coelicolor grown on solid medium. Biotecbnol Lett 16:1015–1020
    [Google Scholar]
  50. Shapiro S. 1989; Nitrogen assimilation in Actinomycetes and the influence of nitrogen nutrition on Actinomycete secondary metabolism. In Regulation of Secondary Metabolism pp. 135–212 Shapiro S., Bhattacharya SK. Edited by Boca Raton, FL: CRC Press;
    [Google Scholar]
  51. Spahr P.F. 1962; Amino acid composition of ribosomes from Escherichia coli . J Mol Biol 4:395–406
    [Google Scholar]
  52. Strauch E., Takano E., Baylis H.A., Bibb M.J. 1991; Thestringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5:289–298
    [Google Scholar]
  53. Takano E., Bibb M.J. 1994; The stringent response, ppGpp and antibiotic production in Streptomyces coelicolor A3(2). Actino-mycetologica 8:1–10
    [Google Scholar]
  54. Takano E., Gramajo H.C., Strauch E., Andres N., White J., Bibb M.J. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804
    [Google Scholar]
  55. Usdin K., Gertsch K., Kirby R. 1984; Evidence for the wide distribution of repetitive DN A sequences in the genus Streptomyces . J Mol Evol 20:25–30
    [Google Scholar]
  56. Vining L.C. 1986; Secondary metabolism. In Biotechnology pp. 20–38 Rehm E., Reed G. Edited by Weinheim: VCH;
    [Google Scholar]
  57. Waksman S.A., Henrici A.T. 1943; The nomenclature and classification of the Actinomycetes. J Bacterial 46:337–341
    [Google Scholar]
  58. Weltner K., Grosjean J., Schuster P., Weber W.J. 1986 Mathematics for Engineers and Scientists. Cheltenham: Stanley Thornes;
    [Google Scholar]
  59. Zyskind J.W., Smith D.W. 1992; DNA replication, the bacterial cell cycle and cell growth. Cell 69:5–8
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-1927
Loading
/content/journal/micro/10.1099/13500872-142-8-1927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error