1887

Abstract

We investigated the usefulness of a novel DNA fingerprinting technique, AFLP, which is based on the selective amplification of genomic restriction fragments by PCR, to differentiate bacterial strains at the subgeneric level. In total, 147 bacterial strains were subjected to AFLP fingerprinting: 36 strains, including 23 pathovars of and six pathovars of one strain of 90 genotypically characterized strains comprising all 14 hybridization groups currently described in the genus and four strains of each of the genera and Depending on the genus, total genomic DNA of each bacterium was digested with a particular combination of two restriction endonucleases and the resulting fragments were ligated to restriction halfsite-specific adaptors. These adaptors served as primer-binding sites allowing the fragments to be amplified by selective PCR primers that extend beyond the adaptor and restriction site sequences. Following electrophoretic separation on 5% (w/v) polyacrylamide/8.3 M urea, amplified products could be visualized by autoradiography because one of the selective primers was radioactively labelled. The resulting banding patterns, containing approximately 30-50 visualized PCR products in the size range 80-550 bp, were captured by a high-resolution densitoscanner and further processed for computer-assisted analysis to determine band-based similarity coefficients. This study reveals extensive evidence for the applicability of AFLP in bacterial taxonomy through comparison of the newly obtained data with results previously obtained by well-established genotypic and chemotaxonomic methods such as DNA-DNA hybridization and cellular fatty acid analysis. In addition, this study clearly demonstrates the superior discriminative power of AFLP towards the differentiation of highly related bacterial strains that belong to the same species or even biovar (i.e. to characterize strains at the infrasubspecific level), highlighting the potential of this novel fingerprinting method in epidemiological and evolutionary studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1881
1996-07-01
2021-10-28
Loading full text...

Full text loading...

References

  1. Altwegg M. Taxonomy and epidemiology of Aeromonas spp the value of new typing methods 1990 Habilitationsschrift: UniversitätZürich.;
    [Google Scholar]
  2. Altwegg M., Steigerwalt A., Altwegg-Bissig R., Lüthy-Hottenstein J., Brenner D. J. Biochemical identification of Aeromonasgenospecies isolated from humans. J Clin Microbiol 1990; 28:258–264
    [Google Scholar]
  3. Ansorge W., Voss H., Wiemann S., Schwager C., Sproat B., Zimmerman J., Stegemann J., Erfle H., Hewitt N., Rupp T. High-throughput automated DNA sequencingfacility with fluorescent labels at the European MolecularBiology Laboratory. Electrophoresis 1992; 13:616–619
    [Google Scholar]
  4. Bassam B. J., Caetano-Anoll£s G., Gresshoff P. M. DNA amplification fingerprinting ofbacteria. Appl Microbiol Biotech 1992; 38:70–76
    [Google Scholar]
  5. van Belkum A. DNA fingerprinting of medically importantmicroorganisms by use of PCR. Clin Microbiol Rev 1994; 7:174–184
    [Google Scholar]
  6. Bertram J., Dürre P. Conjugal transfer and expression ofstreptococcal transposons in Clostridiumacetobutylicum. Arch Microbiol 1989; 151:551–557
    [Google Scholar]
  7. Caetano-Anollés G., Bassam B., Gresshoff P. M. DNA amplification using very short arbitraryoligonucleotide primers. Bio-Technology 1991; 9:553–557
    [Google Scholar]
  8. Clayton R. A., Sutton G., Hinkle P. S., Jr Bult C., , Fields C. Intraspecific variation in small-subunit rRNAsequences in GenBankwhy single sequences may no adequately represent prokaryotic taxa. Int J Syst Bacteriol 1995; 45:595–599
    [Google Scholar]
  9. Cole S. T., Saint Girons I. Bacterial genomics. FEMS Microbiol Rev 1994; 14:139–160
    [Google Scholar]
  10. Davin-Regli A., Abed Y., Charrel R. N., Bollet C., deMicco P. Variations in DNA concentrations significantlyaffect the reproducibility of RAPD fingerprintpatterns. Res Microbiol 1995; 146:561–568
    [Google Scholar]
  11. Doll L., Moshitch S., Frankel G. Poly(GTG)5-associated profiles of Salmonellaand Shigella genomic DNA. Res Microbiol 1993; 144:17–24
    [Google Scholar]
  12. Drahos D., Brackin J., Barry G. Bacterial strain identification bycomparative analysis of chromosomal DNA restrictionpatterns. Phytopathology 1985; 75:1381
    [Google Scholar]
  13. Forbes K. J., Bruce K. D., Jordens J. Z., Ball A., Pennington T. H. Rapid methods in bacterial DNAfingerprinting. J Gen Microbiol 1991; 137:2051–2058
    [Google Scholar]
  14. Giovannetti L., Ventura S., Bazzicalupo M., Fani R., Materassi R. DNA restriction fingerprint analysis of the soilbacterium Azospirillum. J Gen Microbiol 1990; 136:1161–1166
    [Google Scholar]
  15. Goodfellow M., O'Donnell A. G. Roots of bacterial systematics. In Handbook of New Bacterial Systematics 1993 Edited by Goodfellow M., O’Donnell A. G. ondon: Academic Press; pp 3–54
    [Google Scholar]
  16. Grimont F., Grimont P. A. D. Ribosomal ribonucleic acid gene restrictionpatterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 1986; 137:165–175
    [Google Scholar]
  17. Haas W. H., Butler W. R., Woodley C. L., Crawford J. T. Mixed-linker polymerase chain reaction: a newmethod for rapid fingerprinting of isolates of theMycobacterium tuberculosis complex. J Clin Microbiol 1993; 31:1293–1298
    [Google Scholar]
  18. Haertl R., Bandlow G. Application of small fragment restrictionendonuclease analysis (SF-REA) to the epidemiologicalfingerprinting of Staphylococcus aureus. J Med Microbiol 1990; 33:91–96
    [Google Scholar]
  19. He Q., Viljanen M., Mertsola J. Effects of thermocyclers and primers on thereproducibility of banding patterns in randomly amplifiedpolymorphic DNA analysis. Mol Cell Probes 1994; 8:155–160
    [Google Scholar]
  20. Hermans P. W., Sluijter M., Hoogenboezem T., Heersma H., van Belkum A., de Groot R. Comparative study offive different DNAfingerprint techniques for molecular typing of Streptococcuspneumonia strains. J Clin Microbiol 1995; 33:1606–1612
    [Google Scholar]
  21. Huys G., Vancanneyt M., Coopman R., Janssen P., Falsen E., Altwegg M., Kersters K. Cellular fatty acid composition as achemotaxonomic marker for the differentiation ofphenospecies and hybridization groups in the genusAeromonas. Int J Syst Bacteriol 1994; 44:651–658
    [Google Scholar]
  22. Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basisof polymerase chain reaction- amplified ribosomal DNAspacer polymorphisms. Appl Environ Microbiol 1993; 59:945–952
    [Google Scholar]
  23. Kämpfer P., Altwegg M. Numerical classification and identificationof Aeromonas genospecies. J Appl Bacteriol 1992; 72:341–351
    [Google Scholar]
  24. Kernodle S. P., Cannon R. E., Scandalios J. G. Concentration of primer and templatequalitively affects products in random-amplifiedpolymorphic DNA PCR. Biotechniques 1993; 14:362–364
    [Google Scholar]
  25. Krieg N. R., Holt J. G. (editors) 1984 Bergey’s Manual of Systematic Bacteriology vol. 1 Baltimore London: Williams Wilkins.;
    [Google Scholar]
  26. Kwok S., Kellog D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on thepolymerase chain reaction: human immunodeficiency virus 1 modelstudies. Nucleic Acids Res 1990; 18:999–1005
    [Google Scholar]
  27. Landers J. P. Capillary electrophoresis: pioneering newapproaches for biomolecular analysis. Trends Biochem Sei 1993; 18:409–414
    [Google Scholar]
  28. Lazo G. R., Roffey R., Gabriel D. W. Pathovars of Xanthomonas campestris aredistinguishable by restriction fragment lengthpolymorphism. Int J Syst Bacteriol 1987; 37:214–221
    [Google Scholar]
  29. Linton D., Clewley J. P., Burnens A., Owen R. J., Stanley J. An intervening sequence (IV S) in the 16S rRNAgene of the eubacterium Helicobacter canis. Nucleic Acids Res 1994; 22:1954–1958
    [Google Scholar]
  30. Louws F. J., Fulbright D. W., Taylor Stephens C., deBruijn F. Specific genomic fingerprints of phytopathogenicXanthomonas and Pseudomonas pathovars and strains generatedwith repetitive sequences and PCR. Appl Environ Microbiol 1994; 60:2286–2295
    [Google Scholar]
  31. MacPherson J. M., Eckstein P. E., Scoles G. J., Gajadhar A. A. Variability of the random amplified polymorphicDNA assay among thermal cyclers, and effects of primer andDNA concentration. Mol Cell Probes 1993; 7:293–299
    [Google Scholar]
  32. Marmur J. A procedure for the isolation ofdeoxyribonucleic acid from microorganisms. J Mol Biol 1961; 3:208–218
    [Google Scholar]
  33. Meunier J.-R., Grimont P. A. D. Factors affecting reproducibility of randomamplified polymorphic DNA fingerprinting. Res Microbiol 1993; 144:373–379
    [Google Scholar]
  34. Micheli M. R., Bova R., Pascale E., D'Ambrosio E. Reproducible DNA fingerprinting with therandom amplified polymorphic DNA (RAPD)method. Nucleic Acids Res 1994; 22:1921–1922
    [Google Scholar]
  35. Nei M., Li W.-H. Mathematical model for studying geneticvariations in terms of restrictionendonucleases. Proc Natl Acad Sei USA 1979; 76:5269–5273
    [Google Scholar]
  36. Owen R. J. Chromosomal DNA fingerprinting - a new methodof species and strain identification applicable tomicrobial pathogens. J Med Microbiol 1989; 30:89–99
    [Google Scholar]
  37. Penner G. A., Bush A., Wise R., Kim W., Domier L., Kasha K., Laroche A., Scoles G., Molnar S. J., Fedak G. Reproducibility of random amplifiedpolymorphic DNA (RAPD) analysis amonglaboratories. PCR Methods Applic 1993; 2:341–345
    [Google Scholar]
  38. Pitcher D. G., Saunders N. A., Owen R. J. Rapid extraction of bacterial genomic DNAwith guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156
    [Google Scholar]
  39. Prevost G., Jaulhac B., Piemont Y. DNA fingerprinting by pulsed-field gelelectrophoresis is more effective in distinguishing amongmethicillin-resistant Staphylococcus aureusisolates. J Clin Microbiol 1992; 30:967–973
    [Google Scholar]
  40. Rainey P. B., Bailey M. J., Thompson I. P. Phenotypic and genotypic diversity offluorescent pseudomonads isolated from field-grown sugarbeet. Microbiology 1994; 140:2315–2331
    [Google Scholar]
  41. Schierwater B., Ender A. Different DNA polymerases may amplifydifferent RAPD products. Nucleic Acids Res 1993; 21:4647–4648
    [Google Scholar]
  42. Sneath P. H. A. Evidence from Aeromonas for geneticcrossing-over in ribosomal sequences. Int J Syst Bacteriol 1993; 43:626–629
    [Google Scholar]
  43. Sneath P. H. A., Sokal R. R. Numerical Taxonomy: the Principles and Practice of Numerical Classification 1973 San Fransisco: W. H. Freeman.;
    [Google Scholar]
  44. Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (editors) 1986 Bergey's Manual of Systematic Bacteriology vol. 2 Baltimore London: Williams Wilkins.;
    [Google Scholar]
  45. van Steenbergen T. J. M., Colloms S. D., Hermans P. W.M., de Graaff J., Plasterk H. A. Genomic fingerprinting by restriction fragmentend labeling. Proc Natl Acad Sci USA 1995; 92:5572–5576
    [Google Scholar]
  46. Stull T. L., Lipuma J. J., Edlind T. D. A broad spectrum probe for molecularepidemiology of bacteria: ribosomal RNA. J Infect Dis 1988; 157:280–286
    [Google Scholar]
  47. Towner K. J., Cockayne A. 1993 Molecular Methodsfor Microbial Identification and Typing London:: Chapman Hall.;
    [Google Scholar]
  48. Valsangiocomo C., Baggi F., Gaia V., Balmelli T., Peduzzi R., Piffaretti J.-C. Use of amplified fragment length polymorphism inmolecular typing of Legionella pneumophila and applicationto epidemiological studies. J Clin Microbiol 1995; 33:1716–1719
    [Google Scholar]
  49. Vaneechoutte M., Rossau R., De Vos P., Gillis M., Janssens D., Paepe N., De Rouck A., Fiers T., Claeys G., Kersters K. Rapid identification of bacteria of theComamonadaceae with amplified ribosomal DNA-restrictionanalysis (ARDRA). FEMS Microbiol Lett 1992; 93:227–234
    [Google Scholar]
  50. Vauterin L., Vauterin P. Computer-aided objective comparison ofelectrophoresis patterns for grouping and identificationof microorganisms. Eur Microbiol 1992; 1:37–41
    [Google Scholar]
  51. Vauterin L., Swings J., Kersters K. Grouping of Xanthomonas campestris pathovarsby SDS-PAGE of proteins. J Gen Microbiol 1991a; 137:1677–1687
    [Google Scholar]
  52. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. Differentiation of Xanthomonas campestrispv citri strains by sodium dodecyl sulfate-polyacrylamidegel electrophoresis of proteins fatty acid analysis, and DNADNA hybridization.. Int J Syst Bacteriol 1991b; 41:535–542
    [Google Scholar]
  53. Vauterin L., Yang P., Hoste B., Pot B., Swings J., Kersters K. Taxonomy of xanthomonads from cereals andgrasses based on SDS-PAGE of proteins, fatty acid analysisand DNA hybridization. J Gen Microbiol 1992; 138:1467–1477
    [Google Scholar]
  54. Vauterin L., Hoste B., Kersters K., Swings J. Reclassification ofXanthomonas. Int J Syst Bacteriol 1995; 45:472–489
    [Google Scholar]
  55. Vos P., Hogers R., Bleeker M., Reijans M., van deLee T., Hornes M., Freijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new concept for DNAfingerprinting. Nucleic Acids Res 1995; 21:4407–4414
    [Google Scholar]
  56. Waterhouse R. N., Glover L. A. Differences in the hybridization pattern ofBacillus subtilis genes coding for rRNA depend on themethod of DNA preparation. Appl Environ Microbiol 1993; 59:919–921
    [Google Scholar]
  57. Welsh J., McClelland M. Fingerprinting genomes using PCR witharbitrary primers. Nucleic Acids Res 1990; 18:7213–7218
    [Google Scholar]
  58. Welsh J., McClelland M. Genomic fingerprints produced by PCR withconsensus tRNA gene primers. Nucleic Acids Res 1991; 19:861–866
    [Google Scholar]
  59. Wilkinson S. R., Young M., Goodacre R., Morris J. G., Farrow J. A. E., Collins M. D. Phenotypic and genotypic differences betweencertain strains of Clostridium acetobutylicum. FEMS Microbiol Lett 1995; 125:199–204
    [Google Scholar]
  60. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S.V. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535
    [Google Scholar]
  61. Woods C. R., Versalovic J., Koeuth T., Lupski J. R. Whole-cell repetitive element sequence-basedpolymerase chain reaction allows rapid assessment ofclonal relationships of bacterial isolates. J Clin Microbiol 1993; 31:1927–1931
    [Google Scholar]
  62. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genusPseudomonas homology group II to the new genus with the typespecies Burkholderia cepacia (Palleroni and Holmes 1981)comb. nov. Microbiol Immunol 1992; 36:1251–1275
    [Google Scholar]
  63. Yang P., Vauterin L., Vancanneyt M., Swings J., Kersters K. Application of fatty acid methyl esters for thetaxonomic analysis of the genus Xanthomonas. Syst Appl Microbiol 1993; 16:47–71
    [Google Scholar]
  64. Zabeau M., Vos P. 1993 Selectiverestriction fragment amplification: a general method for DNAfingerprinting European PatentOffice, publication 0 534 858 Al.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1881
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error