1887

Abstract

A small-scale functional analysis screen has revealed several new phenotypes associated with a large deletion of , one of two genes known to encode NADP-linked glutamate dehydrogenase. Diploids heterozygous for the deletion are able to sporulate in rich media, while haploid deletants produce dark, wrinkled colonies containing pseudohyphal cells. The haploid cells rapidly lose viability upon starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1667
1996-07-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1667.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1667&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  2. Broek D., Toda T., Michael T., Levin L., Birchmeier C., Zoller M., Powers S., Wigler M. 1987; The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799
    [Google Scholar]
  3. Bussey H., Kaback D.B., /sub> Zhong W., Vo D. T., Clark M. W., Fortin N., Hall J., Quellette B. F. F., Keng T., Barton A. B., Su Y., Davies C. J., Storms R. K. 1995; The nucleotide sequence of chromosome I from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 92:3809–3813
    [Google Scholar]
  4. Carlson M., Celenza J. L., Eng F. D. 1985; Evolution of the dispersed SUC gene family by rearrangement of chromosome telomeres. Mol Cell Biol 5:2894–2902
    [Google Scholar]
  5. Chu G., Vollrath D., Davis R. W. 1989; Separation of large DNA molecules by contour clamped homogeneous electric fields. Science 234:1582–1585
    [Google Scholar]
  6. Cooper T.G. 1982; Nitrogen metabolism in Saccharomyces cerevisiae.. In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression pp. 39–99 Edited by Strathern J. N., Jones E. W. , Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Danhash N., Gardner D. C. J., Oliver S. G. 1991; Heritable damage to yeast caused by transformation. Bio Technology 9:179–182
    [Google Scholar]
  8. Dickinson J.R. 1994; Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae. FEMS Microbiol Lett 119:99–103
    [Google Scholar]
  9. Gardner D.C.J., Heale S. M., Stateva L. I., Oliver S. G. 1993; Treatment of yeast cells with wall lytic enzymes is not required to prepare chromosomes for pulsed field eel analysis. Yeast 9:1053–1055
    [Google Scholar]
  10. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 66:1077–1090
    [Google Scholar]
  11. Goebl M., Petes T. D. 1986; Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46:983–992
    [Google Scholar]
  12. Grenson M. 1983; Study of the positive control of the General Amino Acid Permease and other ammonia sensitive uptake systems. Eur J Biochem 133:141–144
    [Google Scholar]
  13. Grenson M., Hou C. 1972; Ammonia inhibition of the general amino acid permease and its suppression in NADP-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae.. Biochem Biophys Res Comm 48:749–758
    [Google Scholar]
  14. Grenson M., Dubois E., Piotrowska M., Drillien R., Aigle M. 1974; Ammonia assimilation in Saccharomyces cerevisiae as mediated by the glutamate dehydrogenases : evidence for thzgdha locus being the structural gene for NADP-dependent glutamate dehydrogenase. Mol Gen Genet 128:73–85
    [Google Scholar]
  15. Higgins D.R., Strathern J. N. 1991; Electroporation-stimulated recombination in yeast. Yeast 7:823–831
    [Google Scholar]
  16. Horowitz H., Thorburn P., Haber J. E. 1984; Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol Cell Biol 4:2509–2517
    [Google Scholar]
  17. Hu Y., Cooper T. G., Kohlhaw G. B. 1995; The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol 15:52–57
    [Google Scholar]
  18. Magasanik B. 1992 Nitrogen utilization. In The Molecular and Cellular Biology of the Yeast Saccharomyces : Gene Expression pp. 283–317 Edited by Jones E. W., Pringle J. R. , Broach J. P. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Matsumoto K., Uno I., Ishikawa T. 1985; Genetic analysis of the role of cAMP in yeast. Yeast 1:15–24
    [Google Scholar]
  20. Moyano E., Cardenas J., Munoz-Bianco J. 1992; Purification and properties of three NAD(P)+ isozymes of L-glutamate dehydrogenase of Chlamydomonas reinhardtii. Biochem Biophys Acta 1119:63–68
    [Google Scholar]
  21. Moye W. S., Amuro N., Rao J. K. M., Zalkin H. 1985; Nucleotide sequence of yeast GDH1 encoding nicotinamide dinucleotide phosphate-dependent glutamate dehydrogenase. J Biol Chem 260:8502–8508
    [Google Scholar]
  22. Oliver S.G. 1996; From DNA sequence to biological function. Nature 370:597–600
    [Google Scholar]
  23. Rosenkrantz M., Alam T. M., Kim K.-S, Clark B. J., Srere P. A., Guarente L. P. 1986; Mitochondrial and non-mitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes. Mol Cell Biol 6:4509–4515
    [Google Scholar]
  24. Rosenkrantz M., Kell C. S., Pennell E. A., Webster M., Devenish L. J. 1994; Distinct upstream activation regions for glucose-repressed expression of the yeast citrate synthase gene CITI.. Curr Genetli185–195
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. ter Schure E.G., Silljé H.H., Raeven L. J., Boonstra J., Verkleij A.J., Verrips C. T. 1995a; Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. Microbiology 1411101–1108
    [Google Scholar]
  27. ter Schure E.G., Silljé H.H., Verkleij A.J., Boonstra J., Verrips C. T. 1995b; The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 1776672–6675
    [Google Scholar]
  28. Sherman F., Fink G. R., Hicks J. B. 1982 Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  30. Uno I., Matsumoto K., Adachi K., Ishikawa T. 1984; Regulation of the NAD-dependent glutamate dehydrogenase by protein kinases in Saccharomyces cerevisiae. J Biol Chem 259:1288–1293
    [Google Scholar]
  31. Walmsley R. M., Chan C. S. M., Tye B.-K., Petes T. D. 1984; Unusual sequences associated with the ends of yeast chromosomes. Nature 310:157–160
    [Google Scholar]
  32. Wilkinson B.M. 1991 Analysis of the potential Z-DNA sequences of the yeast Saccharomyces cerevisiae PhD thesis: University of Manchester Institute of Science and Technology;
    [Google Scholar]
  33. Yanisch-Perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1667
Loading
/content/journal/micro/10.1099/13500872-142-7-1667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error