1887

Abstract

We have cloned and sequenced the (nucleotide reductase) locus of The locus seems to be organized in an operon comprising four ORFs. The first three encode polypeptides highly similar to the product of the coding sequences characterizing the operons of The sequencing of the conditional lethal mutation localized in the cistron, and the lethality of insertional mutations targeted in the internal region of and demonstrated the essential role of this locus. The fourth ORF, part of the putative operon, which is not similar to any known protein, is also essential. The regulation of expression of the operon, monitored by transcriptional fusions, is similar to the regulation of the functionally relevant operon of The operon was induced by thymidine starvation and its expression was directly or indirectly affected by RecA function. Genetic and functional analysis strongly indicates that in the class I ribonucleotide reductase encoded by this operon is evolutionary distant from the homologous class I enzyme of Enterobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-2995
1996-11-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-2995.html?itemId=/content/journal/micro/10.1099/13500872-142-11-2995&mimeType=html&fmt=ahah

References

  1. Albertini A. M., Galizzi A. 1985; Amplification of a chromosomal region in Bacillus subtilis. J Bacteriol 162:1203–1211
    [Google Scholar]
  2. Albertini A. M., Galizzi A. 1990; The Bacillus subtilis outB gene is highly homologous to an Escherichia coli ntr-like gene. J Bacteriol 172:5482–5485
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic Local Alignment Search Tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation of Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  5. Augustin L., Jacobson B. A., Fuchs J. A. 1994; Escherichia coli Fis and DnaA proteins bind specifically to nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 176:378–387
    [Google Scholar]
  6. Bazill G. W., Karamata D. 1972; Temperature sensitive mutants in B. subtilis defective in deoxyribonucleotide synthesis. Mol Gen Genet 117:19–29
    [Google Scholar]
  7. Booker S., Stubbe J. 1993; Cloning sequencing and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmanii. Proc Natl Acad Sci USA 908352–8356
    [Google Scholar]
  8. Dubnau D. 1993; Genetic exchange and homologous recombination. In Bacillus subtilis and Other Gram-positive Bacteria : Bio-chemisty, Plysiology and Molecular Genetics pp. 555–578 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Ferrari E., Henner D. J., Hoch J. 1981; Isolation of Bacillus subtilis genes from a Charon 4A library. J Bacteriol 146:430–432
    [Google Scholar]
  10. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154:1513–1515
    [Google Scholar]
  11. Filpula D. F., Fuchs J. A. 1977; Regulation of ribonucleoside reductase synthesis in Escherichia coli: increased enzyme synthesis as a result of inhibition of deoxyribonucleic acid synthesis. J Bacteriol 130:107–113
    [Google Scholar]
  12. Filpula D. F., Fuchs J. A. 1978; Regulation of the synthesis of ribonucleotide diphosphate reductase in Escherichia coli: specific activity of the enzyme in relationship to perturbations of DNA replication. J Bacteriol 135:429–435
    [Google Scholar]
  13. Fisher S., Rosenkrantz M. S., Sonenshein A. L. 1984; Glutamine synthetase gene of Bacillus subtilis. Gene 32:427–438
    [Google Scholar]
  14. Fleischmann R. D.others 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  15. Fraser C. M.others 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  16. Giannì M., Galizzi A. 1986; Isolation of genes preferentially expressed during Bacillus subtilis spore outgrowth. J Bacteriol 165:123–132
    [Google Scholar]
  17. Gibert I., Calero S., Barbé J. 1990; Measurement of in vivoexpression of nrdA and nrdB genes of Escherichia coli by using lacZfusions. Mol Gen Genet 220:400–408
    [Google Scholar]
  18. Hanahan D. 1985; Techniques for transformation of E. coli.. In DNA Cloning; a Practical Approach I pp. 109–132 Glover D. M. Edited by Oxford: IRL Press;
    [Google Scholar]
  19. Hanke P. D., Fuchs J. A. 1983; Characterization of the mRNA coding for ribonucleoside diphosphate reductase in Escherichia coli. J Bacteriol 154:1040–1045
    [Google Scholar]
  20. Hoch J. A., Barat M., Anagnostopoulos C. 1967; Transformation and transduction in recombination-defective mutants of Bacillus subtilis. J Bacteriol 93:1925–1937
    [Google Scholar]
  21. Jordan A., Gibert I., Barbé J. 1994a; Cloning and sequencing of the genes from S. typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol 176:3420–3427
    [Google Scholar]
  22. Jordan A., Pontis E., Atta M., Krook M., Gibert I., Barbé J., Reichard P. 1994b; A second class I ribonucleotide reductase in Enterobacteriaceae: characterization of the Salmonella typhimuriumenzyme. Proc Natl Acad Sei USA 9112892–12896
    [Google Scholar]
  23. Jordan A., Argali E., Gibert I., Barbé J. 1996; Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of two class I ribonucleotide reductase present in both bacteria. Mol Microbiol 19:777–790
    [Google Scholar]
  24. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet 108:277–287
    [Google Scholar]
  25. Kuroda A., Asami Y., Sekiguchi J. 1993; Molecular cloning of sporulation specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175:6260–6268
    [Google Scholar]
  26. Love P. E., Yasbin R. E. 1984; Genetic characterisation of the inducible SOS-like system of Bacillus subtilis. J Bacteriol 160:910–920
    [Google Scholar]
  27. Nordlund P., Eklund H. 1993; Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol 232:123–164
    [Google Scholar]
  28. Nordlund P., Sjoberg B. -M., Eklund H. 1990; Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345:593–598
    [Google Scholar]
  29. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Ensymol 183:63–98
    [Google Scholar]
  30. Perego M. 1993; Integrational vectors for genetic manipulations in Bacillus subtilis. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Gemtics pp. 615–624 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Perego M., Ferrari E., Bassi M. T., Galizzi A., Mazza P. G. 1987; Molecular cloning of Bacillus subtilis genes involved in DNA metabolism. Mol Gen Genet 209:8–14
    [Google Scholar]
  32. Reichard P. 1993; From RNA to DNA, why so many ribonucleotide reductases?. Science 260:1773–1777
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Scotti C., Piatti M., Cuzzoni A., Perani P., Tognoni A., Grandi G., Galizzi A., Albertini A. M. 1993; A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130:65–71
    [Google Scholar]
  35. Shimotsu H., Henner D. J. 1986; Construction of a single-copy integration vector and its use in analysis of regulation of the trpoperon of Bacillus subtilis. Gene 43:85–94
    [Google Scholar]
  36. Sun L., Fuchs J. A. 1992; Escherichia coli ribonucleotide reductase expression is cell cycle regulated. Mol Biol Cell 3:1095–1105
    [Google Scholar]
  37. Sun L., Jacobson B. A., Dien B. S., Srienc F., Fuchs J. A. 1994; Cell cycle regulation of the Escherichia coli nrd operon: requirement for a cis-acting upstream AT-rich sequence. J Bacteriol 176:2415–2416
    [Google Scholar]
  38. Sun X., Harder H., Krook M., Jornvall H., Sjorberg B. -M., Reichard P. 1993; A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci USA 90577–581
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  40. Uhlin U., Eklund H. 1994; Structure of ribonucleotide reductase protein R1. Nature 370:533–539
    [Google Scholar]
  41. Yang F., Guizhen L., Rubin H. 1994; Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression and purification of the large subunit. J Bacteriol 176:6738–6743
    [Google Scholar]
  42. Yasbin R. E., Cheo D., Bol D. 1993; DNA repair systems. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 529–537 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-2995
Loading
/content/journal/micro/10.1099/13500872-142-11-2995
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error