1887

Abstract

Identification of antigenic variants of the PorA protein of with specific mAbs (serosubtyping) is used in meningococcal strain characterization and the resultant data has been exploited in the design of novel multivalent vaccines against this important pathogen. The reactivity of the P1.10 serosubtyping mAb MN20F4.17 with eight members of the meningococcal P1.10 variable region (VR) family (prototype P1.10 and variants P1.10a-P1.10g), identified by nucleotide sequence analysis of genes, was investigated. Analysis of overlapping synthetic octapeptides by ELISA demonstrated that the peptide sequence, QNQRPTL, present only in the prototype P1.10, was sufficient for binding of the mAb. A linear peptide of 14 amino acids, containing the minimum epitope, inhibited binding of mAb MN20F4.17 to whole cells in a competitive ELISA. This binding was weak compared with a tethered peptide or the native protein. In whole-cell ELISA or dot-blot assays using low concentrations of mAb MN20F4.17 only the prototype P1.10 was detected. However, when higher concentrations of antibody were used the prototype P1.10 was detected, together with variants P1.10a, P1.10c and P1.10e by whole-cell ELISA and P1.10a and P1.10c by the immunoblot technique. The variants P1.10b, P1.10d, P1.10f and P1.10g showed no reactivity with mAb under any of the conditions tested. A survey of the genes in serogroup B and C strains revealed that the P1.10a variant, rather than the prototype P1.10, was the most common member of the P1.10 VR family in England and Wales. These data illustrate: (i) the problems associated with epidemiological analyses that rely solely on monoclonal antibodies; (ii) the importance of using defined assay conditions for serosubtyping; and (iii) that genetical analyses provide more reliable information than serological data based on murine reagents for the design of candidate vaccines that include PorA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-63
1996-01-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-63.html?itemId=/content/journal/micro/10.1099/13500872-142-1-63&mimeType=html&fmt=ahah

References

  1. Abdillahi H., Poolman J. T. 1987; Whole-cell ELISA for typing Neisseria meningitidis with monoclonal antibodies. FEMS Microbiol Lett 48:367–371
    [Google Scholar]
  2. Abdillahi H., Poolman J. T. 1988a; Definition of meningococcal class 1 OMP subtyping antigens by monoclonal antibodies. FEMS Microbiol Immunol 1:139–144
    [Google Scholar]
  3. Abdillahi H., Poolman J. T. 1988b; Neisseria meningitidis group B serosubtyping using monoclonal antibodies in whole-cell ELISA. Microb Pathog 4:27–32
    [Google Scholar]
  4. Bannister B. 1988; Clinical aspects of meningococcal disease. J Med Microbiol 26:161–163
    [Google Scholar]
  5. Barlow A. K., Heckels J. E., Clarke I. N. 1989; The class 1 outer membrane protein of Neisseria meningitidis: gene sequence and structural and immunological similarities to gonococcal porins. Mot Microbiol 3:131–139
    [Google Scholar]
  6. Brooks J. L., Fallon R. J., Heckels J. E. 1995; Sequence variation in class 1 outer membrane protein in Neisseria meningitidis isolated from patients with meningococcal infection and close household contacts. FEMS Microbiol Lett 128:145–150
    [Google Scholar]
  7. Broome C. V. 1986; The carrier state: Neisseria meningitidis. J Antimicrob Chemother 18:Suppl. A25–34
    [Google Scholar]
  8. Butcher S. J., Omar P. J., Sarvas M., Runeberg-Nyman K. 1991; Sequence comparisons of the class 1 genes from Neisseria meningitidis strains and a folding model of the class 1 protein. Neisseria 1990193–198 Edited by Achtman M., Kohl P., Marchal C., Morelli G., Seiler A., Thiesen B. Berlin: Walter de Gruyter;
    [Google Scholar]
  9. Caugant D. A., Hoiby E. A., Magnus P, Scheel O, Hoel T, Bjune G, Wedege E., Eng J., Froholm L. O. 1994; Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population. J Clin Microbiol 32:323–330
    [Google Scholar]
  10. Delvig A, Jahn S, Kusecek B., Heckels J. E., Rosenqvist E., Hoiby E. A., Michaelsen T. E., Achtman M. 1994; A comparison of human and murine monoclonal IgGs specific for the P1.7 PorA protein of Neisseria meningitidis. Mot Immunol 31:1257–1267
    [Google Scholar]
  11. Fine P. E. 1991; Meningococcal vaccine trial in Norway. Lancet 338:1456–1457
    [Google Scholar]
  12. Frasch C. E. 1985; Status of a group B Neisseria meningitidis vaccine. Eur J Clin Microbiol 4:533–536
    [Google Scholar]
  13. Frasch C. E. 1989; Vaccines for prevention of meningococcal disease. Clin Microbiol Rev 2:S134–S138
    [Google Scholar]
  14. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259–274
    [Google Scholar]
  15. Hart C. A., Rogers T. R. F. 1993; Meningococcal disease. J Med Microbiol 39:3–25
    [Google Scholar]
  16. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., Poolman J. T. 1991; Topology of outer membrane proteins in pathogenic Neisseria species. Infect Immun 59:2963–2971
    [Google Scholar]
  17. van der Ley P., Poolman J. T. 1991; The class 1 outer membrane protein of Neisseria meningitidis: prediction of topology and construction of a multivalent vaccine strain. Neisseria 1990193–198 Edited by Achtman M., Kohl P., Marchal C., Morelli G., Seiler A., Thiesen B. Berlin: Walter de Gruyter;
    [Google Scholar]
  18. van der Ley P., van der Biezen J., Poolman J. T. 1995; Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine 13:401–407
    [Google Scholar]
  19. McGuinness B. T., Barlow A. K., Clarke I. N., Farley J. E., Anilionis A., Poolman J. T., Heckels J. E. 1990; Deduced amino acid sequences of class 1 protein PorA from three strains of Neisseria meningitidis. J Exp Med 171:1871–1882
    [Google Scholar]
  20. McGuinness B. T., Clarke I. N., Lambden P. R., Barlow A. K., Poolman J. T., Jones D., Heckels J. E. 1991; Point mutation in meningococcal porA gene associated with increased endemic disease. Lancet 337:514–517
    [Google Scholar]
  21. McGuinness B. T., Lambden P. R., Heckels J. E. 1993; Class 1 outer membrane protein of Neisseria meningitidis: epitope analysis of the antigenic diversity between strains, implications for subtype definition and molecular epidemiology. Mol Microbiol 7:505–514
    [Google Scholar]
  22. Maiden M. C. J., Suker J., McKenna A. J., Bygraves J. A., Feavers I. M. 1991; Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Mol Microbiol 5:727–736
    [Google Scholar]
  23. Milagres L. G., Ramos S. R., Sacchi C. T., Melles C. E. A., Vieira V. S. D., Sato H., Brito G. S., Moraes J. C., Frasch C. E. 1994; Immune response of Brazilian children to a Neisseria meningitidis serogroup B outer membrane protein vaccine: comparison with efficacy. Inject Immun 62:4419–4424
    [Google Scholar]
  24. Peltola H. 1983; Meningococcal disease: still with us. Rev Infect Dis 5:71–91
    [Google Scholar]
  25. Poolman J. T., Kriz Kuzemenska P, Ashton F, Bibb W, Dankert J, Demina A., Frøholm L. O., Hassan King M., Jones D. M., Lind P., Prakash K., Xujing H. 1995; Serotypes and subtypes of Neisseria meningitidis: results of an international study comparing sensitivities and specificities of monoclonal antibodies. Clin Diagn Lab Immunol 2:69–72
    [Google Scholar]
  26. Sanborn W. R. 1987; Development of meningococcal vaccines. Evolution of Meningococcal Disease121–134 Edited by Vedros N. A. Boca Raton, Florida: CRC Press;
    [Google Scholar]
  27. Schwartz B., Moore P. S., Broome C. V. 1989; Global epidemiology of meningococcal disease. Clin Microbiol Rev 2:S118–S124
    [Google Scholar]
  28. Sierra V. G. G., Campa C. H., Garcia L. I., Sotolongo F. P., Izquierdo L. P., Valcarcel M. N., Casanueva V. G., Baro M. S., Leguen F. C., Rodriguez R. C., Terry H. M. 1991; Efficacy evaluation of the Cuban vaccine VA-MENGOC-BC against disease caused by serogroup B Neisseria meningitidis. Neisseria 1990193–198 Edited by Achtman M., Kohl P., Marchal C., Morelli G., Seiler A., Thiesen B. Berlin: Walter de Gruyter;
    [Google Scholar]
  29. Suker J., Feavers I. M., Achtman M, Morelli G, Wang J.-F., Maiden M. C. J. 1994; The porA gene in serogroup A meningococci : evolutionary stability and mechanism of genetic variation. Mol Microbiol 12:253–265
    [Google Scholar]
  30. Wedege E, Dalseg R, Caugant D. A., Poolman J. T., Froholm L. O. 1993; Expression of an inaccessible P1.7 subtype epitope on meningococcal class 1 proteins. J Med Microbiol 38:23–28
    [Google Scholar]
  31. Witholt B, Boekhout M, Brock M, Kingma J, van Heerikhuizen H., de Leij L. 1976; An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem 74:160–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-63
Loading
/content/journal/micro/10.1099/13500872-142-1-63
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error