1887

Abstract

A number of physiologically different nitrile-hydrolysing bacteria were isolated from coastal marine sediments in Denmark by enrichment culture. One strain, BL1, identified as grew on acetonitrile as sole carbon and nitrogen source in a defined medium. Growth occurred between 0 and 8% NaCl with an optimum around 2%, thus reflecting the marine origin of the isolate. Intact cells of BL1 could hydrolyse a large variety of saturated and unsaturated aliphatic nitriles to their corresponding acids. Benzonitrile and benzylcyanide were not hydrolysed, whereas some aromatic compounds containing a -CN group attached to a C or C aliphatic side chain were accepted as substrates. The substrate spectrum of BL1 was thus markedly different from those of other Grampositive nitrile-hydrolysing bacteria isolated from non-marine environments. Nitrile hydrolysis during growth and in resting cell suspensions usually occurred without intermediate accumulation of amide outside the cells. Detailed studies, however, showed that nitrile hydrolysis by strain BL1 was due to a nitrile hydratase/amidase enzyme system. Nitrile hydratase activity was found to be inducible whereas amidase activity was constitutive. The amidase activity of cells could, however, be enhanced manyfold by growth in media containing acetamide or acetonitrile. In most cases amides were hydrolysed at a much higher rate than the corresponding nitriles, which explained why amides were rarely detected in the surrounding medium during nitrile hydrolysis. BL1 exhibited the highest tolerance towards acetonitrile ever reported for a nitrile-hydrolysing bacterium, as demonstrated by its ability to grow exponentially in the presence of 900 mM acetonitrile.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-145
1996-01-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-145.html?itemId=/content/journal/micro/10.1099/13500872-142-1-145&mimeType=html&fmt=ahah

References

  1. Amarant T., Vered Y., Bohak Z. 1989; Substrates and inhibitors of the nitrile hydratase and amidase of Corynebacterium nitrilophilus. Biotechnol Appl Biochem 11:49–59
    [Google Scholar]
  2. Arnaud A., Galzy P., Jallageas J. C. 1977; Etude de l‘aceto-nitrilase d’une souche de Brevibacterium. Agrk Biol Chem 44:2251–2252
    [Google Scholar]
  3. Arnaud A., Galzy P., Jallageas J. C. 1980; Production d'acides-amides stereospecifiques par hydrolyse biologique d'-aminonitriles racemiques. Bull Soc Chim Fr 2:87–90
    [Google Scholar]
  4. Asano A., Fujishiro K., Tani Y., Yamada H. 1982; Aliphatic nitrile hydratase from Arthrobacter sp. J-l. Purification and characterization. Agric Biol Chem 46:1165–1174
    [Google Scholar]
  5. Bower C. E., Holm-Hansen T. 1980; A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37:794–798
    [Google Scholar]
  6. Chapatwala K. D., Babu G. R. V., Dudly C., Williams R., Aremu K. 1993; Degradative capability of Pseudomonas putida on acetonitrile. Appl Biochem Biotechnol 39/40:655–666
    [Google Scholar]
  7. Collins P. A., Knowles C. J. 1983; The utilization of nitriles and amides by Nocardia rhodochrous. J Gen Microbiol 129:711–718
    [Google Scholar]
  8. DiGeronimo M. J., Antoine A. D. 1976; Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21. Appl Environ Microbiol 31:900–906
    [Google Scholar]
  9. Doetsch R. N., Smibert R. M., Krieg N. R. 1981 Manual of Methods for General Bacteriology21–34 409-444. Edited by Gerhardt P., Murray R. G. E., Castilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Ferris J. P., Hagan W. J. 1984; HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120
    [Google Scholar]
  11. Finnegan I., Toerien S., Smit F., Raubenheimer H. G. 1992; Commercial application of microbial enzymes with nitrile degrading activity. S Afr J Sci 88:188–189
    [Google Scholar]
  12. Goa J. 1953; A micro biuret method for protein determination. Determination of total protein in cerebrospinal fluid. Scand J Clin Fab Invest 5:218–222
    [Google Scholar]
  13. Goodfellow M. 1989; Genus Rhodococcus Zopf 1891, 28AL. Bergey's Manual of Systematic Bacteriology 4:2362–2371 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Goodfellow M., Lechevalier M. P. 1989; Genus Nocardia Trevisian 1889,9AL. Bergey's Manual of Systematic Bacteriology vol. 42350–2361 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Harper B. D. 1977; Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (rhodochrous group). Biochem J 165:309–319
    [Google Scholar]
  16. Ikehata O., Nishiyama M., Horinouchi S., Beppu T. 1989; Primary structure of nitrile hydratase deduced from the nucleotide sequence of a Rhodococcus species and its expression in Escherichia coli. Fur J Biochem 181:563–570
    [Google Scholar]
  17. Ingvorsen K., Yde B., Godtfredsen S. E., Tsuchiya R. 1988; Microbial hydrolysis of organic nitriles and amides. Cyanide Compounds in Biology (Ciba Foundation Symposium 140) 16–31 Edited by Evered D., Harnett S. Chichester: John Wiley;
    [Google Scholar]
  18. Ingvorsen K., Hojer-Pedersen B., Godtfredsen S. E. 1991; Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl Environ Microbiol 57:1783–1789
    [Google Scholar]
  19. Jallegeas J.C., Arnaud A., Galzy P. 1980; Byconversion of nitriles and their applications. Advances in Biochemical Engineering 141–32 Edited by Fiechter A. Berlin & New York: Springer-Verlag;
    [Google Scholar]
  20. Knowles C. J. 1985; Microbial degradation of cyanide. World Biotech Rep537–542
    [Google Scholar]
  21. Knowles C. J., Wyatt J. W. 1992; The degradation of cyanide and nitriles. Microbial Control of Pollution (Society for General Microbiology Symposium 48) 113–128 Edited by Fry J. C., Gadd G. M., Herbert A. R., Jones C. W., Watson-Craik I. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  22. Kobayashi M., Nagasawa T., Yamada H. 1992; Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 10:402–408
    [Google Scholar]
  23. Kobayashi M., Komeda H., Nagasawa T., Nishiyama M., Horinouchi S., Beppu T., Yamada H., Shimizu S. 1993; Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous Jl. Eur J Biochem 217:327–336
    [Google Scholar]
  24. Linton E. A., Knowles C. J. 1986; Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100-21. J Gen Microbiol 132:1493–1501
    [Google Scholar]
  25. Loomis W. F. 1988; The prebiological environment. Four Billion Yearspart 14–12 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  26. Mauger J., Nagasawa T., Yamada H. 1988; Nitrile hydratase-catalyzed production of isonicotinamide, picolinamide and pyra-zinamide from 4-cyanopyridine, 2-cyanopyridine and cyanopy-razine in Rhodococcus rhodochrous. J Biotechnol 8:87–96
    [Google Scholar]
  27. Mayaux J.F., Cerbelaud E., Soubrier F., Faucher D., Pétré D. 1990; Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6704
    [Google Scholar]
  28. Miller J. M., Gray D. O. 1982; The utilization of nitriles and amides by a Rhodococcus species. J Gen Microbiol 128:1803–1809
    [Google Scholar]
  29. Miller J. M., Knowles C. J. 1984; The cellular location of nitrilase and amidase of Brevibacterium R312. FEMS Microbiol Fett 21:147–151
    [Google Scholar]
  30. Mimura A., Kawano T., Yamaga K. 1969; Application of microorganisms to petrochemical industry. I. Assimilation of nitrile compounds by microorganisms. J Ferment Technol 47:631–638
    [Google Scholar]
  31. Nagasawa T., Yamada H. 1989; Microbial transformation of nitriles. Trends Biotechnol153–158
    [Google Scholar]
  32. Nawaz M. S., Heinze T. M., Cerniglia C. A. 1992; Metabolism of benzonitrile and butyronitrile by Klebsiella pneumoniae. Appl Environ Microbiol 58:27–31
    [Google Scholar]
  33. Oró J., Lazcano-Araujo A. 1981; The role of HCN and its derivatives in prebiotic evolution. Cyanide in Biology517–541 Edited by Vennesland B., Conn E. E., Knowles C. J., Westley J., Wissing F. London: Academic Press;
    [Google Scholar]
  34. Rainey F. A., Burghardt J., Kroppenstedt R. M., Klatte S., Stackebrandt E. 1995; Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528
    [Google Scholar]
  35. Robinson W. G., Hook R. H. 1964; Ricinine nitrilase. J Biol Chem 239:4257–4262
    [Google Scholar]
  36. Vaughan P. A., Cheetham P. S. J., Knowles C. J. 1988; The utilization of pyridine carbonitriles and carboxamides by Nocardia rhodochrous LL100-21. J Gen Microbiol 134:1099–1107
    [Google Scholar]
  37. Vaughan P. A., Knowles C. J., Cheetham P. S. J. 1989; Conversion of 3-cyanopyridine to nicotinic acid by Nocardia rhodochrous LL100-21. Enzyme Microb Technol 11:815–823
    [Google Scholar]
  38. Vennesland B., Pistorius K., Gewitz H.-S. 1981; HCN production by microalgae. Cyanide in Biology349–361 Edited by Vennesland B., Conn E. E., Knowles C. J., Westley J., Wissing F. London: Academic Press;
    [Google Scholar]
  39. Wyatt J. M., Linton E. A. 1988; The industrial potential of microbial nitrile biochemistry. In Cyanide Compounds in Biology (Ciba Foundation Symposium 140) 32–48 Edited by Evered D., Harnett S. Chichester: John Wiley;
    [Google Scholar]
  40. Yamamoto K., Oishi K., Fujimatsu I., Komatsu K. -I. 1991; Production of R-(–)-mandelic acid from mandelonitrile by Alca-ligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-145
Loading
/content/journal/micro/10.1099/13500872-142-1-145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error