1887

Abstract

Radiorespirometry was employed to study carbon metabolism during the growth of A3(2) in a minimal medium which permitted the production of methylenomycin as the sole detectable secondary metabolite. A switch in the pattern of carbon metabolism from the Embden-Myerhof-Parnas pathway to the pentose phosphate pathway occurred during the period of slower growth in batch culture which immediately preceded entry into the stationary phase. This coincided with the period of methylenomycin production. It is proposed that the biosynthesis of methylenomycin is supported by the generation of NADPH during the latter part of growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-1-133
1996-01-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/1/mic-142-1-133.html?itemId=/content/journal/micro/10.1099/13500872-142-1-133&mimeType=html&fmt=ahah

References

  1. Ahmad S., Glavas N. A., Bragg P. D. 1992; A mutation at Gly 314 of the β subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. Eur J Biochem 207:733–739
    [Google Scholar]
  2. Ahmed Z. A., Shapiro S., Vining L. C. 1984; Excretion of a-keto acids by strains of Streptomyces venezuelae. Can J Microbiol 30:1014–1021
    [Google Scholar]
  3. Canovas J. L., Kornberg H. L. 1965; Fine control of phosphopyruvic carboxylase activity in Escherichia coli. Biochim Biophys Acta 96:169–172
    [Google Scholar]
  4. Cochrane V. W. 1961; Physiology of actinomycetes. Annu Rev Microbiol 15:1–26
    [Google Scholar]
  5. Dekleva M. L., Strohl W. R. 1988a; Biosynthesis of e-rhodo-mycinone from glucose by Streptomyces C5 and comparison with intermediary metabolism of other polyketide-producing streptomycetes. Can J Microbiol 34:1235–1240
    [Google Scholar]
  6. Dekleva M. L., Strohl W. R. 1988b; Activity of phosphoenol-pyruvate carboxylase of an anthracycline-producing streptomycete. Can J Microbiol 34:1241–1246
    [Google Scholar]
  7. Demain A. L. 1992; Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. Secondary Metabolites: Their Function and Evolution3–23 Edited by Chadwick D. J., Whelan J. Chichester: John Wiley;
    [Google Scholar]
  8. Herberg R. J. 1963; Statistical aspects of liquid scintillation counting by internal standard techniques. Single isotope. Anal Chem 35:786–791
    [Google Scholar]
  9. Herbert R. B. 1989 The Biosynthesis of Secondary Metabolites, 2nd edn. London: Chapman & Hall;
    [Google Scholar]
  10. Hobbs G., Frazer C. M., Gardner D. C. J., Cullum J. A., Oliver S. G. 1989; Dispersed growth of streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277
    [Google Scholar]
  11. Hobbs G., Frazer C. M., Gardner D. C. J., Flett F., Oliver S. G. 1990; Pigmented antibiotic production by Streptomyces coelicolor A3(2): kinetics and the influence of nutrients. J Gen Microbiol 136:2291–2296
    [Google Scholar]
  12. Hobbs G., Obanye A. I.C., Petty J., Mason J.C., Barratt E., Gardner D. C. J., Flett F., Smith C. P., Broda P., Oliver S. G. 1992; An integrated approach to studying regulation of production of the antibiotic methylenomycin by Streptomyces coelicolor A3(2). J Bacteriol 174:1487–1494
    [Google Scholar]
  13. Hopwood D. A. 1988; Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc R Soc Lond B Biol Sci 235:121–138
    [Google Scholar]
  14. Hornemann U., Hopwood D. A. 1981; Biosynthesis of methylenomycin A: a plasmid-determined antibiotic. Antibiotics: Biosynthesis IV123–131 Edited by Corcoran J. W. New York: Springer-Verlag;
    [Google Scholar]
  15. Hostalek Z. 1969; Regulation of biosynthesis of secondary metabolites. I. Biosynthesis of chlortetracycline and tricarboxylic acid activity. Biotechnol Bioeng 11:539–548
    [Google Scholar]
  16. Ikeda H., Kotaki H., Tanaka H., Omura S. 1988; Involvement of glucose catabolism in avermectin production by Streptomyces. Antimicrob Agents Chemother 32:282–284
    [Google Scholar]
  17. McGahren W. J., van den Hende J. H., Mitscher L. A. 1969; Chlorinated cyclopentanone fungitoxic metabolites from the fungus, Sporormia affinis. J Am Chem Soc 91:157–167
    [Google Scholar]
  18. Malpartida F., Hopwood D. A. 1984; Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309:462–464
    [Google Scholar]
  19. Malpartida F., Hopwood D. A. 1986; Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol & Gen Genet 205:66–73
    [Google Scholar]
  20. Malpartida F., Niemi J., Navarette R., Hopwood D. A. 1990; Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93:91–99
    [Google Scholar]
  21. Narva K. E., Feitelson J. S. 1990; Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172:326–333
    [Google Scholar]
  22. Noble M., Noble D., Fletton R. A. 1978; G2201-C, a new cyclopentenedione antibiotic, isolated from the fermentation broth of Streptomyces cattleya. J Antibiot 31:15–18
    [Google Scholar]
  23. Obanye A. 1994; Carbon flux and the production of methylenomycin in Streptomyces coelicolor A3(2). PhD thesis University of Manchester;
  24. Penzikova G. A., Levitov M. M. 1966; Patterns of carbohydrate metabolism of Actinomyces fradiae grown on media containing starch or glucose. Biokhimiya 31:1073–1077
    [Google Scholar]
  25. Thiericke R., Zeeck A. 1988; Biosynthesis of manumycin: origin of the polyene chains. J Antibiot 41:694–696
    [Google Scholar]
  26. Umino K., Furumai T., Matsuzawa N., Yamaguchi Y., Itoh Y., Okuda T. 1973; Studies on pentenomycins. I. Production, isolation and properties of pentenomycins I and II, new antibiotics from Streptomyces eurothermus MCRL 0738. J Antibiot 26:506
    [Google Scholar]
  27. Vorisek J., Powell A. J., Vanek Z. 1969; Regulation of biosynthesis of secondary metabolites. IV. Purification and properties of phosphoenolpyruvate carboxylase in Streptomyces aureofaciens. Folia Microbiol 14:398–405
    [Google Scholar]
  28. Wang C. H., Stern I., Gilmour C. M., Klungsoyr S., Reed D. J., Bialy J. J., Christensen B. E., Cheldelin V. H. 1958; Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol 76:207–216
    [Google Scholar]
  29. Yamaguchi M., Hatefi Y. 1991; Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase: membrane topography of the bovine enzyme. J Biol Chem 266:5728–5735
    [Google Scholar]
  30. Yamaguchi M., Hatefi Y., Trach K., Hoch J. A. 1988; The primary structure of the mitochondrial energy-linked nicotinamide transhydrogenase deduced from the sequence of cDNA clones. J Biol Chem 263:2761–2767
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-1-133
Loading
/content/journal/micro/10.1099/13500872-142-1-133
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error