1887

Abstract

The major outer surface proteins of Lyme disease spirochaetes are differentially expressed in different isolates. strain F1 expresses none, or very low amounts, of the OspA and OspB proteins. To elucidate the mechanisms that control the expression of these abundant surface proteins the operon of F1 was cloned, sequenced and compared to the previously sequenced operon of ACAI and B31. The two strains showed almost 100% identity at the DNA level, although Coomassie-stained gels and Western blot analyses showed significant variation in the Osp protein content. Transcriptional analysis revealed that the amount of mRNA produced in F1 varies more than the amount of protein, suggesting that the expression of OspA and OspB proteins is regulated at both the transcriptional and the translational level. Furthermore, the inverse relationship between the transcription of and the operon could indicate coregulation of these separately encoded operons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-6-1321
1995-06-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/6/mic-141-6-1321.html?itemId=/content/journal/micro/10.1099/13500872-141-6-1321&mimeType=html&fmt=ahah

References

  1. Asbrink E., Hovmark A. 1985; Successful cultivation of spirochetes from skin lesions of patients with erythema chronicum migrans Afzelius and acrodermatitis chronica atrophicans.. Acta Pathol Microbiol Immunol Scand Sect B Microbiol 93:161–163
    [Google Scholar]
  2. Asbrink E., Hederstedt B., Hovmark A. 1984; The spirochetal etiology of erythema chronicum migrans Afzelius.. Acta Dermato- venereol 64:291–295
    [Google Scholar]
  3. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 1992 Current Protocols in Molecular Biology. New York:: Greene Publishing Associates & Wiley-Interscience.;
    [Google Scholar]
  4. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J.-C., Assous M., Grimont P.A.D. 1992; Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and Group VS461 associated with Lyme borreliosis.. Int J Syst Bacteriol 42:378–383
    [Google Scholar]
  5. Barbour A.G. 1984; Isolation and cultivation of Lyme disease spirochetes.. Yale J Biol Med 57:71–75
    [Google Scholar]
  6. Barbour A.G. 1988; Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent.. J Clin Microbiol 26:475–478
    [Google Scholar]
  7. Barbour A.G., Garon C.F. 1987; Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends.. Science 237:409–411
    [Google Scholar]
  8. Barbour A.G., Schrumpf M.E. 1986; Polymorphism of major surface proteins of Borrelia burgdorferi.. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 263:83–91
    [Google Scholar]
  9. Barbour A.G., Heiland R.A., Howe T.R. 1985; Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates.. J Infect Dis 152:478–484
    [Google Scholar]
  10. Barthold S.W. 1993; Antigenic stability of Borrelia burgdorferi during chronic infections of immunocompetent mice.. Infect Immun 61:4955–4961
    [Google Scholar]
  11. Barthold S.W., Bockenstedt L.K. 1993; Passive immunizing activity of sera from mice infected with Borrelia burgdorferi.. Infect Immun 61:4696–4702
    [Google Scholar]
  12. Bergstrom S., Bundoc V.G., Barbour A.G. 1989; Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochete, Borrelia burgdorferi.. Mol Microbiol 3:479–486
    [Google Scholar]
  13. Bundoc V.G., Barbour A.G. 1989; Clonal polymorphism of outer membrane protein OspB of Borrelia burgdorferi.. Infect Immun 57:2733–2741
    [Google Scholar]
  14. Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P. 1992; Lyme disease: a tick borne spirochetosis?. Science 216:1317–1319
    [Google Scholar]
  15. Canica M.M., Nato F., du Merle L., Mazie J.C., Baranton G., Postic D. 1993; Monoclonal antibodies for identification of Borrelia afɀelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis.. Scand J Infect Dis 25:441–448
    [Google Scholar]
  16. Craft J.E., Fischer D.K., Shimamoto G.T., Steere A.C. 1986; Antigens of Borrelia burgdorferi recognized during Lyme disease. Appearance of a new IgM response and expansion of the IgG response late in illness.. J Clin Invest 78:9340–939
    [Google Scholar]
  17. Eiffert H., Ohlenbusch A., Fehling W., Lotter H., Thomssen R. 1992; Nucleotide sequence of the ospAB operon of a Borrelia burgdorferi strain expressing OspA but not OspB.. Infect Immun 60:1864–1868
    [Google Scholar]
  18. von Gabain A., Belasco J.G., Schottel J.L., Chang A.C.Y., Cohen S.N. 1983; Decay of mRNA in Escherichia coli: investigation of the fate of specific segment of transcripts.. Proc Natl Acad Sci USA 80653–657
    [Google Scholar]
  19. Harr R., Fällman P., Häggsträm M., Wahlsträm L., Gustafsson P. 1986; GENEUS, a computer system for DNA and protein sequence analysis containing an information retrieval system for the EMBL data library.. Nucleic Acids Res 11:273–284
    [Google Scholar]
  20. Hinnebusch J., Barbour A.G. 1992; Linear- and circular- plasmid copy numbers in Borrelia burgdorferi.. J Bacteriol 174:5251–5257
    [Google Scholar]
  21. Howe T.R., Mayer L.W., Barbour A.G. 1985; A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete.. Science 227:645–646
    [Google Scholar]
  22. Howe T.R., LaQuier F.W., Barbour A.G. 1986; Organization of genes encoding two outer membrane proteins of the Lyme disease agent within a single transcriptional unit.. Infect Immun 54:207–212
    [Google Scholar]
  23. Jiang W., Luft B.J., Munoz P., Dattwyler R.J., Gorevic P.D. 1990; Cross-antigenicity between the major surface proteins (OspA and OspB) and other proteins of Borrelia burgdorferi.. J Immunol 144:284–289
    [Google Scholar]
  24. Jonsson M., Noppa L., Barbour A.G., Bergsträm S. 1992; Heterogeneity of outer surface membrane proteins in Borrelia burgdorferi: comparison of the osp operons of three isolates of different geographic origins.. Infect Immun 60:1845–1853
    [Google Scholar]
  25. Jonsson M., Elmros T., Bergsträm S. 1995; Subcutaneous implanted chambers in different mouse strains as an animal model to study genetic stability during infection with Lyme disease Borrelia.. Microb Pathog (in press)
    [Google Scholar]
  26. Marconi R.T., Samuels D.S., Garon C.F. 1993; Transcriptional analyses and mapping of the ospC gene in Lyme disease spirochetes.. J Bacteriol 175:926–932
    [Google Scholar]
  27. Marconi R.T., Samuels D.S., Landry R.K., Garon C.F. 1994; Analysis of the distribution and molecular heterogeneity of the ospD gene among the Lyme disease spirochetes: evidence for lateral gene exchange.. J Bacteriol 176:4572–4582
    [Google Scholar]
  28. Margolis N., Rosa P.A. 1993; Regulation of expression of major outer surface proteins in Borrelia burgdorferi.. Infect Immun 61:2207–2210
    [Google Scholar]
  29. Margolis N., Hogan D., Tilly K., Rosa P.A. 1994; Plasmid location of Borrelia purine biosynthesis gene homologs.. J Bacteriol 176:6427–6432
    [Google Scholar]
  30. Norris S.J., Carter C.J., Howell J.K., Barbour A.G. 1992; Low-passage-associated proteins of Borrelia burgdorferi B31: characterization and molecular cloning of OspD, a surface-exposed, plasmid-encoded lipoprotein.. Infect Immun 60:4662–4672
    [Google Scholar]
  31. Padula S.J., Sampieri A., Dias F., Szcepanski A., Ryan R.W. 1993; Molecular characterization and expression of p23 (OspC) from a North American strain of Borrelia burgdorferi.. Infect Immun 61:5097–5105
    [Google Scholar]
  32. Rosa P.A., Schwan T., Hogan D. 1992; Recombination between genes encoding major outer surface proteins A and B of Borrelia burgdorferi.. Mol Microbiol 6:3031–3040
    [Google Scholar]
  33. Sadziene A., Wilske B., Ferdows M.S., Barbour A.G. 1993; The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid.. Infect Immun 61:2192–2195
    [Google Scholar]
  34. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  36. Shoberg R.J., Jonsson M., Sadziene A., Bergström S., Thomas D.D. 1994; Identification of a highly cross-reactive outer surface protein (Osp) B epitope among diverse geographic isolates of Borrelia spp. causing Lyme disease.. J Clin Microbiol 32:489–500
    [Google Scholar]
  37. Wilske B., Preac-Mursic V., Schierz G., Busch K.V. 1986; Immunochemical and immunological analysis of European Borrelia burgdorferi strains.. Zentralbl Bakteriol Mikrobiol Hyg Ser A 263:92–102
    [Google Scholar]
  38. Wilske B., Preac-Mursic V., Schierz G., Gueye W., Herzer P., Weber K. 1988a; Immunochemical analysis of the immune response in late manifestations of Lyme borreliosis.. Zentralbl Bakteriol Mikrobiol Hyg Ser A 267:549–558
    [Google Scholar]
  39. Wilske B., Preac-Mursic V., Schierz G., Kuhbeck R., Barbour A.G., Kramer M. 1988b; Antigenic variability of Borrelia burgdorferi.. Ann NY Acad Sci 539:126–143
    [Google Scholar]
  40. Wilske B., Preac-Mursic V., Jauris S., Hofmann A., Pradel I., Soutschek E., Schwab E., Will G., Wanner G. 1993; Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi.. Infect Immun 61:2182–2191
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-6-1321
Loading
/content/journal/micro/10.1099/13500872-141-6-1321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error