1887

Abstract

Summary: The effect of breeding from the white rot fungus ME446 on performance for lignin mineralization was examined. This model for informed strain improvement without mutagenesis is based on abundant restriction fragment length polymorphisms (RFLPs). Under optimized conditions for lignin mineralization, extracellular manganese peroxidase (MnP) but not lignin peroxidase (LiP) could be detected, so measurement of LiP activity is not a valid assay for lignin degradation. Mineralization of C-labelled synthetic lignin (C-DHP) was used to compare the performance of the wild-type strain ME446 with those of sets of progeny strains. Meiotic progeny from strain ME446, heterokaryotic progeny of crosses between such strains, and meiotic progeny of one heterokaryotic strain were examined. In each case, a minority of strains performed more efficiently than the parental strain ME446. The greatest range of lignin-mineralization performance (70-fold) was found within the set of initial progeny of ME446 and the narrowest was within the set of secondary homokaryotic strains. This is consistent with the view that a moderate number of determinants contribute to lignin mineralization performance. However, performance did not correlate with the possession of any single allele of those for 38 previously defined RFLP markers. The results show that lignin mineralization performance can be improved by cycles of crosses and fruiting, without mutagenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-11-2811
1995-11-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/11/mic-141-11-2811.html?itemId=/content/journal/micro/10.1099/13500872-141-11-2811&mimeType=html&fmt=ahah

References

  1. Addleman K., Archibald F. 1993; Kraft pulp bleaching and delignification by dikaryons and monokaryons of Trametes versicolor. . Appl Environ Microbiol 59:266–273
    [Google Scholar]
  2. Agosin E., Odier E. 1985; Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi.. Appl Microbiol Biotechnol 21:397–403
    [Google Scholar]
  3. Broda P., Birch P.R.J., Brooks P.R., Sims P.F.G. 1995; PCR-mediated analysis of lignocellulolytic gene transcription by Pbanero-cbaete cbrysosporium: substrate-dependent differential expression within gene families.. Appl Environ Microbiol 61:2358–2364
    [Google Scholar]
  4. Burdsall H.H., Eslyn W.E. 1974; A new Pbanerocbaete with a chrysosporium imperfect state.. Mycotaxon 1:123–133
    [Google Scholar]
  5. Cancel A.M., Orth A.B., Tien M. 1993; Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. . Appl Environ Microbiol 59:2909–2913
    [Google Scholar]
  6. Capdevila C., Moukha S., Ghyczy M., Theilleux J., Gelie B., Delattre M., Corrieu G., Asther M. 1990; Characterization of peroxidase secretion and subcellular organization of Phanerochaete chrysosporium INA-12 in the presence of various soybean phospholipid fractions.. Appl Environl Microbiol 56:3811–3816
    [Google Scholar]
  7. Chua M.G.S., Choi S., Kirk T.K. 1983; Mycelium binding and depolymerization of synthetic 14C-labelled lignin during decomposition by Phanerochaete chrysosporium. . Holzforschung 37:55–61
    [Google Scholar]
  8. Copa-Patiño J.L., Broda P. 1994; A Phanerochaete chrysosporium β-d-glucosidase/β-d-xylosidase with specificity for (1→ 3)-β-d-glucan linkages.. Carbohydr Res 253:265–275
    [Google Scholar]
  9. Copa-Patiño J.L., Kim Y.G., Broda P. 1993; Production and initial characterisation of the xylan degrading system of Phanerochaete chrysosporium. . Appl Microbiol Biotechnol 40:69–76
    [Google Scholar]
  10. Coughlan M.P. (editor) 1989 Enzyme Systems for Eignocellulose Degradation. London & New York:: Elsevier Applied Science.;
    [Google Scholar]
  11. Coughlan M. P., Amaral Collaco M. T. (editors) 1990 Advances in Biological Treatment of Eignocellulose Materials. London & New York:: Elsevier Applied Science.;
    [Google Scholar]
  12. Crawford R. L. 1981 Lignin Biodegradation and Transformation. New York:: Wiley.;
    [Google Scholar]
  13. Datta A., Bettermann A., Kirk T. K. 1991; Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay.. Appl Environ Microbiol 57:1453–1460
    [Google Scholar]
  14. Dosoretz C.G., Rothschild N., Hadar Y. 1993; Overproduction of lignin peroxidase by Phanerochaete chrysosporium (BKM-F-1767) under nonlimiting nutrient conditions.. Appl Environ Microbiol 59:1919–1926
    [Google Scholar]
  15. Effland M.J. 1977; Modified procedure to determine acid-insoluble lignin in wood and pulp.. TAPPI 60:143–144
    [Google Scholar]
  16. Eriksson K.-E., Hamp S.G. 1978; Regulation of endo-1,4-β-glucanase production in Sporotrichum pulverulentum. . Eur J Biochem 90:183–190
    [Google Scholar]
  17. Eriksson K.-E., Johnsrud S.C., Vallander L. 1983; Degradation of lignin and lignin model compounds by various mutants of the white-rot fungus Sporotrichum pulverulentum. . Arch Microbiol 135:161–168
    [Google Scholar]
  18. Eriksson K.E.L., Blanchette R.A., Ander P. 1990 Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin, Heidelberg & New York:: Springer-Verlag.;
    [Google Scholar]
  19. Evans C. S., Gallagher I. M., Atkey P. T., Wood D. A. 1991; Localisation of degradative enzymes in white-rot decay of ligno-cellulose.. Biodegradation 2:93–106
    [Google Scholar]
  20. Faison B.D., Kirk T.K. 1985; Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. . Appl Environ Microbiol 49:299–304
    [Google Scholar]
  21. Faix O., Mozuch M.D., Kirk T.K. 1985; Degradation of gymnosperm (guaiacyl) versus angiosperm (syringyl/guaiacyl) lignins by Phanerochaete chrysosporium. . Holzforschung 39:203–208
    [Google Scholar]
  22. Garcia S., Latge J.P., Prevost M.C., Leisola M. 1987; Wood degradation by white-rot fungi: cytochemical studies using lignin peroxidase-immunoglobulin-gold complexes.. Appl Environ Microbiol 53:2384–2387
    [Google Scholar]
  23. Gold M.H., Alic M. 1993; Molecular biology of the lignin degrading basidiomycete Phanerochaete chrysosporium. . Microbiol Rev 57:605–622
    [Google Scholar]
  24. Gold M.H., Cheng T.M. 1979; Conditions for fruit body formation of the white rot basidiomycete Phanerochaete chrysosporium. . Arch Microbiol 121:37–41
    [Google Scholar]
  25. Haemmerli S.D., Leisola M.S.A., Fiechter A. 1986; Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. . FEMS Microbiol Lett 35:33–36
    [Google Scholar]
  26. Haider K., Trojanowski J. 1975; Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi.. Arch Microbiol 105:33–41
    [Google Scholar]
  27. Hammel K.E., Moen M.A. 1991; Depolymerization of a synthetic lignin in vitro by lignin peroxidase.. Enzyme Microb Technol 13:15–18
    [Google Scholar]
  28. Hammel K.E., Jensen K.A. Jr Mozuch M.D., Landucci L.L., Tien M., Pease E.A. 1993; Ligninolysis by a purified lignin peroxidase.. J Biol Chem 268:12274–12281
    [Google Scholar]
  29. Huoponen K., Ollikka P., Kalin M., Walther I., Mantsala P., Reiser J. 1990; Characterization of lignin peroxidase-encoding gene from lignin-degrading basidiomycetes.. Gene 89:145–150
    [Google Scholar]
  30. Johnsrud S.C., Eriksson K.E. 1985; Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3: new cellulase deficient strains with increased ability to degrade lignin.. Appl Microbiol Biotechnol 21:320–327
    [Google Scholar]
  31. Kerem Z., Friesem D., Hadar Y. 1992; Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatusversus Phanerochaete chrysosporium. . Appl Environ Microbiol 58:1121–1127
    [Google Scholar]
  32. Kirk T.K., Connors W.J., Bleam R.D., Hackett W.F., Zeikus J.G. 1975; Preparation and microbial decomposition of synthetic [14C]lignins.. Proc Natl Acad Sci USA 722515–2519
    [Google Scholar]
  33. Kirk T.K., Tien M., Johnsrud S.C., Eriksson K.E. 1986; Lignin-degrading activity of Phanerochaete chrysosporium Burds.: comparison of cellulase-negative and other strains.. Enzyme Microb Technol 8:75–80
    [Google Scholar]
  34. Kondo R., Kurashiki K., Sakai K. 1994; In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter.. Appl Environ Microbiol 60:921–926
    [Google Scholar]
  35. Lackner R., Srebotnik E., Messner K. 1991; Immunogold-silver staining of extracellular ligninases secreted by Phanerochaete chrysosporium. . Can J Microbiol 37:665–668
    [Google Scholar]
  36. Mason J.C., Birch O.M., Broda P. 1990; The preparation of [14C] radiolabelled lignocellulose of differing maturities from spring barley and the degradation of these substrates by Phanerochaete chrysosporium and Streptomyces cyaneus. . J Gen Microbiol 136:227–232
    [Google Scholar]
  37. Michel F.C. Jr Dass S.B., Grulke E.A., Reddy C.A. 1991; Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent.. Appl Environ Microbiol 57:2368–2375
    [Google Scholar]
  38. Moukha S.M., Wosten H.A.B., Asther M., Wessels J.G.H. 1993; In situ localization of the secretion of lignin peroxidases in colonies of Phanerochaete chrysosporium using a sandwiched mode of culture.. J Gen Microbiol 139:969–978
    [Google Scholar]
  39. Niederberger P., Prasad R., Miozzari G., Kacser H. 1992; A strategy for increasing an in vivo flux by genetic manipulations: the tryptophan system of yeast.. Biochem J 287:473–479
    [Google Scholar]
  40. Niku-Paavola M.-L., Karhunen E., Kantelinen A., Viikari L., Lundell T., Hatakka A. 1990; The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. . J Biotechnol 13:211–221
    [Google Scholar]
  41. Orth A.B., Denny M., Tien M. 1991; Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. . Appl Environ Microbiol 57:2591–2596
    [Google Scholar]
  42. Orth A.B., Royse D.J., Tien M. 1993; Ubiquity of lignindegrading peroxidases among various wood-degrading fungi.. Appl Environ Microbiol 59:4017–4023
    [Google Scholar]
  43. Paice M.G., Reid I.D., Bourbonnais R., Archibald F.S., Jurasek L. 1993; Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp.. Appl Environ Microbiol 59:260–265
    [Google Scholar]
  44. Paszczynski A., Huynh V., Crawford R. 1985; Enzymatic activities of an extracellular Mn-dependent peroxidase from Phanerochaete chrysosporium. . FEMS Microbiol Lett 29:37–41
    [Google Scholar]
  45. Perez J., Jeffries T.W. 1990; Mineralization of 14C-ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase.. Appl Environ Microbiol 56:1806–1812
    [Google Scholar]
  46. Périé F.H., Gold M.H. 1991; Manganese regulation of manganese peroxidase expression and lignin degradation by the white-rot fungus Dichomitus squalens. . Appl Environ Microbiol 57:2240–2245
    [Google Scholar]
  47. Pham T.T.T., Maaroufi A., Odier E. 1990; Inheritance of cellulose-and lignin-degrading ability as well as endoglucanase isozyme pattern in Dichomitus squalens. . Appl Microbiol Biotechnol 33:99–104
    [Google Scholar]
  48. Raeder U., Broda P. 1986; Meiotic segregation analysis of restriction site polymorphisms allows rapid genetic mapping.. EMBO J 5:1125–1127
    [Google Scholar]
  49. Raeder U., Thompson W., Broda P. 1989a; RFLP-based genetic map of Phanerochaete chrysosporium ME446: lignin peroxidase genes occur in clusters.. Mol Microbiol 3:911–918
    [Google Scholar]
  50. Raeder U., Thompson W., Broda P. 1989b; Genetic factors influencing lignin peroxidase activity in Phanerochaete chrysosporium ME446.. Mol Microbiol 3:919–924
    [Google Scholar]
  51. Rinderknecht H., Wilding P., Haverback B.J. 1967; A new method for the determination of α-amylase.. Experientia 15:805
    [Google Scholar]
  52. Ruel K., Joseleau J.-P. 1991; Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium. . Appl Environ Microbiol 57:374–384
    [Google Scholar]
  53. Röttimann C., Schwember E., Salas L, Cullen D., Vicuna R. 1992; Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. . Biotechnol Appl Biochem 16:64–76
    [Google Scholar]
  54. Röttimann-Johnson C., Salas L., Vicuna R., Kirk T.K. 1993; Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. . Appl Environ Microbiol 59:1792–1797
    [Google Scholar]
  55. Sims P.F.G., Soares-Felipe M.S., Gent M.E., Tempelaars C., Wang Q., Broda P. 1994; Differential expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. . Mol Microbiol 12:209–216
    [Google Scholar]
  56. Srebotnik E., Messner K., Petterson B. 1988; Ultrastructural localization of ligninase of Phanerochaete chrysosporium by immunogold labeling.. Curr Microbiol 16:221–227
    [Google Scholar]
  57. Tanahashi M., Higuchi T. 1981; Dehydrogenative polymerization of monolignols by peroxidase and H202 in a dialysis tube. I. Preparation of highly polymerized DHPs.. Wood Res 67:29–41
    [Google Scholar]
  58. Tempelaars C.A.M., Birch P.R.J., Sims P.F.G., Broda P. 1994; Isolation, characterization and analysis of the expression of the cbhII gene of Phanerochaete chrysosporium. . Appl Environ Microbiol 60:4387–4393
    [Google Scholar]
  59. Thompson W., Broda P. 1987; Mating behaviour in an isolate of Phanerochaete chrysosporium. . Trans Br My col Soc 89:285–294.Tien
    [Google Scholar]
  60. Tien M., Myer S.B. 1990; Selection and characterization of mutants of Phanerochaete chrysosporium exhibiting ligninolytic activity under nutrient-rich conditions.. Appl Environ Microbiol 56:2540–2544
    [Google Scholar]
  61. Tonon F., Odier E. 1988; Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. . Appl Environ Microbiol 54:466–472
    [Google Scholar]
  62. Uzcategui E., Ruiz R., Montesino R., Johansson G., Pettersson G. 1991; The 1,4-β-d-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. . J Biotechnol 19:271–286
    [Google Scholar]
  63. Venkatradi R., Irvine R.L. 1990; Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. . Appl Environ Microbiol 56:2684–2691
    [Google Scholar]
  64. Wariishi H., Valli K., Gold M.H. 1991; In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. . Biochem Biophys Res Commun 176:269–275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-11-2811
Loading
/content/journal/micro/10.1099/13500872-141-11-2811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error