1887

Abstract

Colicin V is a ribosomally synthesized antimicrobial peptide produced by . Four recently characterized genes, arranged in two convergent operons on the plasmid pColV-K30, are required for colicin V synthesis, export and immunity. We report the purification and N-terminal amino acid sequencing of the colicin V protein. Our results demonstrate that the colicin V primary translation product, which consists of 103 amino acids, is proteolytically processed. A leader peptide, consisting of 15 amino acid residues, is removed from the N-terminus during maturation of colicin V. This leader peptide is not related to the N-terminal signal sequences which direct proteins across the cytoplasmic membrane via the Sec pathway. The molecular mass of colicin V, obtained by mass spectrometry analysis, showed that the peptide consists of only unmodified amino acids. The deduced amino acid sequence of the leader peptide was highly homologous to the N-terminal extensions found in non-lantibiotic, peptide bacteriocins produced by Gram-positive bacteria. These findings strongly indicate that colicin V belongs to a family of small peptide bacteriocins that have been found previously only among the Gram-positive lactic acid bacteria.

Keyword(s): bacteriocin , colicin V and microcin
Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-9-2383
1994-09-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/9/mic-140-9-2383.html?itemId=/content/journal/micro/10.1099/13500872-140-9-2383&mimeType=html&fmt=ahah

References

  1. van Belkum M. J. 1991 Eactococcal bacteriocins: genetics and mode of action. PhD thesis University of Groningen;
    [Google Scholar]
  2. Casadaban M.C., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli.. J Mot Biol 138:179–207
    [Google Scholar]
  3. Chehade H., Braun V. 1988; Iron-regulated synthesis and uptake of colicin V. FEMS Lett 52:177–182
    [Google Scholar]
  4. Cornwell G. G., Sletten K., Johansson B., Westermark P. 1988; Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem Biophys Res Commun 154:648–653
    [Google Scholar]
  5. Diep D. B., Havarstein L. S., Nissen-Meyer J., Nes I. F. 1994; The gene encoding plantaricin A from Lactobacillusplantarum C11, is located on the same transcription unit as an agr-Yike regulatory system.. Appl Environ Microbiol 60:160–166
    [Google Scholar]
  6. Engelke G., Gutowski-Eckel Z., Hammelmann M., Entian K.-D. 1993; Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the Nis B protein. Appl Environ Microbiol 58:3730–3743
    [Google Scholar]
  7. Fremaux C., Ahn C., Klaenhammer T. R. 1993; Molecular analysis of the lactacin F operon. Appl Environ Microbiol 59:3906–3915
    [Google Scholar]
  8. Freund S., Jung G. 1992; Lantibiotics: An overview and conformational studies on gallidermin and Pep5. In Bacteriocins, Microcins and Lantibiotics pp. 75–92 Edited by James R., Lazdun-ski C. , Pattus F. . Berlin: Springer-Verlag;
    [Google Scholar]
  9. Frick K. K., Quackenbush R. L., Konisky J. 1981; Cloning of immunity and structural genes for colicin V. J Bacteriol 148:498–507
    [Google Scholar]
  10. Gilmore M. S., Segarra R. A., Booth M. C. 1990; An Hly B-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin.. Infect Immun 58:3914–3923
    [Google Scholar]
  11. Gilson L, Mahanty H. K., Kolter R. 1987; Four plasmid genes are required for colicin V synthesis, export and immunity. J Bacteriol 169:2466–2470
    [Google Scholar]
  12. Gilson L., Mahanty H. K., Kolter R. 1990; Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9:3875–3884
    [Google Scholar]
  13. Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. 1991; Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc eelidum. J Bacteriol 173:7491–7500
    [Google Scholar]
  14. Hershman H.P., Helinski D. R. 1967; Comparative studies of the events associated with colicin induction. J Bacteriol 94:691–699
    [Google Scholar]
  15. Higgins C.F. 1992; ABC transporters: From microorganisms to man. Annu Rev Cell Biol 8:67–113
    [Google Scholar]
  16. Holo H., Nilssen O., Nes I. F. 1991; Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. Cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887
    [Google Scholar]
  17. Hynes W. L., Ferretti J. J., Tagg J. R. 1993; Cloning the gene encoding streptococcin A-FF22, a novel lantibiotic produced by Streptococcus pyogenes and determination of its nucleotide sequence.. Appl Environ Microbiol 59:1969–1971
    [Google Scholar]
  18. Jung G. 1991; Lantibiotics: a survey. In Nisin and novel lantibiotics pp. 1–34 Edited by Jung G., Sahl H. G. Escom: Leiden;
    [Google Scholar]
  19. Klaenhammer T.R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. In FEMS Microbiology Reviews, papers and abstracts presented at the fourth symposium on lactic acid bacteria, genetics, metabolism and applications Noordwijkerhout, the Netherlands, 5-9 September 1993 pp. 39–85 Edited by de Vos W. M., Huis in’t Veld J. H. J., Poolman B. . Elsevier: Amsterdam;
    [Google Scholar]
  20. Klein C., Kaletta C., Schnell N., Entian K.-D. 1992; Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58:132–142
    [Google Scholar]
  21. Kok J., Holo H., van Belkum M., Haandrikman A., Nes I. F. 1993; Non-nisin bacteriocins in lactococci: biochemistry, genetics and mode of action. In Bacteriocins in lactic acid bacteria pp. 121–151 Edited by Hoover D., Steensen L. . New York: Academic Press;
    [Google Scholar]
  22. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C. M., Vandenbergh P. A. 1992; Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0.. Appl Environ Microbiol 58:2360–2367
    [Google Scholar]
  23. van der Meer J. R., Polman J., Beerthuyzen M. M., Siezen R. J., Kuipers O. P., de Vos W. M. 1993; Characterization of the Lactococcus lactis nisin A operon genes nisP encoding a subtilisin-like serine protease involved in precursor processing, and nis R encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588
    [Google Scholar]
  24. Nieto Lozano J. C., Nissen-Meyer J., Sletten K., Pelaz C., Nes I. F. 1992; Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol 138:1985–1990
    [Google Scholar]
  25. Quadri L.E.N., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1994; Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LY'XIB. J Biol Chem 269:12204–12211
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Segarra R.A. 1992 Molecular characterisation of the Enterococcus faecalis hemolysin/bacteriocin determinant. PhD thesis University of Oklahoma;
    [Google Scholar]
  28. Schnell N., Engelke G., Augustin J., Rosenstein R., Ungermann V., Got Z.F., Entian K.D. 1992; Analysis in genes involved in the biosynthesis of lantibiotic epidermin. Ear J Biochem 204:57–68
    [Google Scholar]
  29. Stoddard G. W., Petzel J. P., van Belkum M. J., Kok J., McKay L. L. 1992; Molecular analyses of the lactococcin A gene cluster from Eactococcus lactis subsp. lactis biovar diacetylactis WM4.. Appl Environ Microbiol 58:1952–1961
    [Google Scholar]
  30. Tichaczek P.S. 1993 Charakterisierung der Bakteriozine curvacin A aus Eactobacilluscurvatus LTH1174 undsakacin P aus E. sake ETH613. PhD thesis der Universitat Hohenheim;
    [Google Scholar]
  31. Waters V.L., Crosa H. C. 1991; Colicin V virulence plasmids. Microbiol Rev 55:437–450
    [Google Scholar]
  32. Yang C.C., Konisky J. 1984; Colicin V-treated Escherichia coli does not generate membrane potential. J Bacterial 158:757–759
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-9-2383
Loading
/content/journal/micro/10.1099/13500872-140-9-2383
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error