1887

Abstract

Five of the genes known to encode the synthesis of poly(glycerol phosphate), the major teichoic acid of 168, are organized in two divergently transcribed operons (a divergon), denoted and . To monitor their expression, the 399 bp intergenic region separating the first structural genes of these operons was fused, in both orientations, to a reporter gene, allowing measurement of promoter activity under specific physiological conditions. Under all experimental conditions, and appeared coordinately expressed, the level of being always higher than that of . No influence of the chromosomal context was observed. Phosphate limitation was accompanied by reduced gene expression. Following the onset of sporulation, expression of genes diminished rapidly and was essentially abolished by stage II. During germination, the activity of genes was detectable before the rise in culture turbidity associated with spore outgrowth. In contrast to (), the expression of which is DNA-damage-inducible, the induction of SOS functions had no effect on and gene expression. The biological significance of these results is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-9-2279
1994-09-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/9/mic-140-9-2279.html?itemId=/content/journal/micro/10.1099/13500872-140-9-2279&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; The genetic map of Bacillus subtilis.. In Bacillus subtilis and Other Gram-positive Bacteria pp. 425–461 Edited by Sonenshein A. L., Hoch J. A. , Losick R. . Washington, DC: ASM;
    [Google Scholar]
  2. Antoniewski C., Savelli B., Stragier P. 1990; The spoil J gene, which regulates early developmental steps in Bacillus subtilis belongs to a class of environmentally responsive genes. J Bacterial 172:86–93
    [Google Scholar]
  3. Araki Y., Ito E. 1989; Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol 17:121–135
    [Google Scholar]
  4. Baddiley J. 1970; Structure, biosynthesis and function of teichoic acids. Account Chem Res 3:98–105
    [Google Scholar]
  5. Barr K., Ward S., Meier-Dieter U., Mayer H., Rick P. D. 1988; Characterization of an Escherichia coli rff mutant defective in transfer of IV-acetylmannosaminuronic acid (Man Nac A) from UDP-Man Nac A to a lipid-linked intermediate involved in enterobacterial common antigen synthesis.. J Bacteriol 170:228–233
    [Google Scholar]
  6. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid.. J Bacteriol 110:281–290
    [Google Scholar]
  7. Brehm J. K., Oultram J. D., Thompson D. E., Swinfield T. J., Peck H., Young M., Minton N. P. 1988; Construction of plasmid vectors systems for Clostridium acetobutylicum.. In Genetics and Biotechnology of Bacilli 2 pp. 409–414 Edited by Ganesan A. T., Hoch J. A. . San Diego: Academic Press;
    [Google Scholar]
  8. Briehl M., Pooley H. M., Karamata D. 1989; Mutants of Bacillus subtilis thermosensitive for growth and wall teichoic acid synthesis. J Gen Microbiol 135:1325–1334
    [Google Scholar]
  9. Brooks D., Mays L. L., Hatefi Y., Young F. E. 1971; Glucosvlation of teichoic acid: solubilisation and partial characterization of the uridine diphosphoglucose: polyglycerol-teichoic acid glucosyl transferase from membranes of Bacillus subtilis. J Bacteriol 107:223–229
    [Google Scholar]
  10. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic-cloning vectors. 1. Improved polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing.. Gene 68:139–149
    [Google Scholar]
  11. Cheo D. L., Bayles K. W., Yasbin R. 1991; Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol 173:1696–1703
    [Google Scholar]
  12. Chin T., Younger J., Glaser L. 1968; Synthesis of teichoic acid. VII. Synthesis of teichoic acid during spore germination.. J Bacteriol 95:2044–2050
    [Google Scholar]
  13. Chung C.T., Miller R. H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16:3580
    [Google Scholar]
  14. De Boer W. R., Kruyssen F. J., Wouters J. T. M. 1981; Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymer in the supernatant of chemostat cultures. J Bacteriol 146:877–884
    [Google Scholar]
  15. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA minipreparation suitable for sequencing. Nucleic Acids Res 16:9878
    [Google Scholar]
  16. Dubnau E. J., Cabane K., Smith I. 1987; Regulation of spo OH an early sporulation gene in bacilli. J Bacteriol 169:1182–1191
    [Google Scholar]
  17. Ellwood D.C., Tempest D. W. 1972; Effect of environment on bacterial wall content and composition. Adv Microb Physiol 7:83–117
    [Google Scholar]
  18. Errington J. 1986; A general method for fusion of the Escherichia coli lac Z gene to chromosomal genes in Bacillus subtilis. J Gen Microbiol 132:2953–2966
    [Google Scholar]
  19. Errington J., Mandelstam J. 1986; Use of lac Z gene fusion to determine the dependence pattern of sporulation operon spoil A in spo mutants of Bacillus subtilis. J Gen Microbiol 132:2953–2966
    [Google Scholar]
  20. Errington J., Vogt C. H. 1990; Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis β-galactosidase and its regulator. J Bacteriol 172:488–490
    [Google Scholar]
  21. Estrela A. I., Pooley H. M., de Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid, poly(3-O-β-D-glucopyranosyl-N-acetylgalactosamine-l-phosphate); gne A a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J Gen Microbiol 137:943–950
    [Google Scholar]
  22. Grant W.D. 1974; Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase. J Gen Microbiol 82:363–369
    [Google Scholar]
  23. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids.. J Mol Biol 166:557–580
    [Google Scholar]
  24. Honeyman A.L., Stewart G. C. 1989; The nucleotide sequence of the rod C operon in Bacillus subtilis. Mol Microbiol 3:1257–1268
    [Google Scholar]
  25. Janczura E., Perkins H. R., Rogers H. J. 1961; Teichuronic acid: a mucopolysaccharide present in wall preparations from vegetative cells of Bacillus subtilis. Biochem J 80:82–93
    [Google Scholar]
  26. Karamata D., Gross J. 1970; Isolation and genetic analysis of temperature sensitive mutants of Bacillus subtilis defective in DNA synthesis. Mol and Gen Genet 108:277–287
    [Google Scholar]
  27. Karamata D., Pooley H. M., Monod M. 1987; Expression of heterologous genes for wall teichoic acids in Bacillus subtilis 168. Mol and Gen Genet 207:73–81
    [Google Scholar]
  28. Lang W. K., Glassey K., Archibald A. R. 1982; Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell wall.. J Bacteriol 151:367–375
    [Google Scholar]
  29. Lazarevic V., Karamata D. 1993 The Bacillus subtilis tag GH operon encodes proteins possibly involved in teichoic acid translocation. Seventh International Conference on Bacillus July 18-23 Abstract P87 Paris, France: Institut Pasteur;
    [Google Scholar]
  30. Lazarevic V., Margot Ph., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lyt RABC divergon: a regulatory unit encompassing the structural genes of the N- acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  31. Leonhardt H., Alonso J. C. 1988; Construction of a shuttle vector for inducible gene expression in Escherichia coli and Bacillus subtilis. J Gen Microbiol 134:605–609
    [Google Scholar]
  32. Makela P.H., Mayer H. 1976; Enterobacterial common antigen. Bacteriol Rev 40:591–632
    [Google Scholar]
  33. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162
    [Google Scholar]
  34. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Eaboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Margot Ph, Karamata D. 1992; Identification of the structural genes for N-acetylmuramoyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol and Gen Genet 232:359–366
    [Google Scholar]
  36. Margot Ph, Mauël C., Karamata D. 1994; The gene of the N- acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545
    [Google Scholar]
  37. Mauck J., Glaser L. 1972; On the mode of in vitro assembly of the cell wall of Bacillus subtilis. J Biol Chem 247:1180–1187
    [Google Scholar]
  38. Mauël C., Karamata D. 1984; Characterization of proteins induced by mitomycin C treatment of Bacillus subtilis. J Virol 49:806–812
    [Google Scholar]
  39. Mauël C., Young M., Margot Ph., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol and Gen Genet 215:388–394
    [Google Scholar]
  40. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137:929–941
    [Google Scholar]
  41. Meier-Dieter U., Starman R., Barr K., Mayer H., Rick P. D. 1990; Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn/0 insertion mutants defective in enterobacterial common antigen synthesis.. J Biol Chem 265:13490–13497
    [Google Scholar]
  42. Meier-Dieter U., Barr K., Starman R., Hatch L., Rick P. D. 1992; Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. J Biol Chem 267:746–753
    [Google Scholar]
  43. Miller J. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Nicholson W.L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp. 391–455 Edited by Harwood C. R., Cutting S. M. Chichester: John Wiley;
    [Google Scholar]
  45. O'Kane C., Stephens M. A., McConnel D. 1986; Integrable a-amylase plasmid for generating random transcriptional fusions in Bacillus subtilis. J Bacterial 168:973–981
    [Google Scholar]
  46. Pooley H. M., Abelian F.-X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyl transferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137:921–928
    [Google Scholar]
  47. Pooley H. M., Abelian F.-X., Karamata D. 1992; CDP glycerol: poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tag F (rod C). J Bacteriol 174:646–649
    [Google Scholar]
  48. Pooley H. M., Abelian F.-X., Karamata D. 1993; Wall teichoic acid, peptidoglycan synthesis and morphogenesis in Bacillus subtilis.. In Bacterial Growth and Ljsis pp. 385–392 Edited by dt Pedro M.A. New York: Plenum Press;
    [Google Scholar]
  49. Rosenberger R.F. 1976; Control of teichoic and teichuronic acid biosynthesis in Bacillus subtilis 168 trp. Evidence for repression of enzyme synthesis and inhibition of enzyme activity. Biochim Biophys Acta 428:516–524
    [Google Scholar]
  50. Schlaeppi J. M., Pooley H. M., Karamata D. 1982; Identification of cell wall subunits in Bacillus subtilis and analysis of their segregation during growth. J Bacteriol 149:329–337
    [Google Scholar]
  51. Shibaev V. N., Duckworth M., Archibald A. R., Baddiley J. 1973; The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168.. Biochem J 135:383–384
    [Google Scholar]
  52. Soldo B., Lazarevic V., Margot Ph., Karamata D. 1993; Sequencing and analysis of the divergon comprising gta B the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195
    [Google Scholar]
  53. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078
    [Google Scholar]
  54. Sterlini J., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to actinomycin resistance. Biochem J 113:29–37
    [Google Scholar]
  55. Tinoco I., Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41
    [Google Scholar]
  56. Torriani A. 1960; Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 38:460–469
    [Google Scholar]
  57. Ward J.B. 1981; Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rer 45:211–243
    [Google Scholar]
  58. Yanisch-Perron C., Viera J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  59. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-9-2279
Loading
/content/journal/micro/10.1099/13500872-140-9-2279
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error