1887

Abstract

When grown in a synthetic medium containing more than 3 mM K, the marine bacterium exhibited a K transport system with apparent and maximum velocity ( ) of 3·0 mM and 1·5 μmol min (mg cell protein), respectively. The growth rate of this organism in synthetic medium containing less than 0·2 mM K was dependent on K concentration and was half-saturated at about 50 μM K. The cells grown at low concentrations of K induced another K transport system with and values of 0·3 mM and 0·6 μmol min (mg cell protein) respectively. The high-affinity system appeared when cells were grown at concentrations less than 2·0 mM K and was fully induced at 0·1 mM K and below. A mutant strain (FS181) unable to grow at 0·1 mM K was isolated and found to be defective in the inducible K transport system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1781
1994-07-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1781.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1781&mimeType=html&fmt=ahah

References

  1. Abee T., Knol S., Hellingwerf K. J., Bakker E. P., Siebers A., Konings W. N. 1992; A Kdp-like, high-affinity, K+-translocating ATPase is expressed during growth of Rhodobacter sphaeroides in low potassium media. Arch Microbiol 158:374–380
    [Google Scholar]
  2. Bakker E.P. 1992a; Cell K+ and K+ transport systems in prokarvotcs. In Alkali Cation Transport Systems in Prokaryotes pp. 205224 Edited by Bakker E. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Bakker E.P. 1992b; Low-affinitv K+ uptake systems. In Alkali Cation Transport Systems in Prokaryotes pp. 253–276 Edited by Bakker E. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Bakker E. P., Kroll R., Booth I. R. 1984; Potassium transport in Escherichia coli: sodium is not a substrate of the potassium uptake svstem Trk A. FEMS Microbiol Lett 23:293–297
    [Google Scholar]
  5. Bakker E. P., Borchard A., Michels M., Altendorf K., Siebers A. 1987; High-affinity potassium uptake system in Bacillus acidocaldarius showing immunological cross-reactivity with the Kdp system from Escherichia coli . J Bacteriol 169:4342–4348
    [Google Scholar]
  6. Bossemeyer D., Schldsser A., Bakker E. P. 1989; Specific cesium transport via the Escherichia coli Kup (Trk D) K+ uptake system. J Bacteriol 171:2219–2221
    [Google Scholar]
  7. Dosch D. C., Helmer G. L., Sutton S. H., Salvacion F. F., Epstein W. 1991; Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium. J Bacteriol 173:687–696
    [Google Scholar]
  8. Epstein W., Davies M. 1970; Potassium-dependent mutant of Escherichia coli K-12. J Bacteriol 101:836–843
    [Google Scholar]
  9. Epstein W., Kim B. S. 1971; Potassium transport loci in Escherichia coli K-12. J Bacteriol 108:639–644
    [Google Scholar]
  10. Erecinska M., Deutsch C. J., Davis S. 1981; Energy coupling to K+ transport in Paracoccus denitrificans . J Biol Chem 256:278–284
    [Google Scholar]
  11. Hassan H., MacLeod R. A. 1975; Kinetics of Na+-dependent K+ ion transport in a marine pseudomonad. J Bacteriol 121:160–164
    [Google Scholar]
  12. Hesse J. E., Wieczorek L., Altendorf K., Reicin A. S., Dorus E., Epstein W. 1984; Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. Proc Natl Acad Sci USA 81:4746–4750
    [Google Scholar]
  13. Nakamura T., Tokuda H., Unemoto T. 1982; Effects of pH and monovalent cations on the potassium ion exit from the marine bacterium, I'ibrio alginolyticus, and the manipulation of cellular cation contents. Biochim Biophys Acta 692:389–396
    [Google Scholar]
  14. Nakamura T., Tokuda H., Unemoto T. 1984; K/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, I ibrio alginolyticus . Biochim Biophys Acta 776:330–336
    [Google Scholar]
  15. Nakamura T., Kawasaki S., Unemoto T. 1992; Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium I 'ibrio alginolyticus . J Gen Microbiol 138:1271–1276
    [Google Scholar]
  16. Schldsser A. S., Kluttig S., Hamann A., Bakker E. P. 1991; Subcloning, nucleotide sequence, and expression of trkG, a gene that encodes an integral membrane protein involved in potassium uptake via the Trk system of Escherichia coli . J Bacteriol 173:3170–3176
    [Google Scholar]
  17. Stewart L.M.D., Bakker E. P., Booth I. R. 1985; Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP. J Gen Microbiol 131:77–85
    [Google Scholar]
  18. Tokuda H., Unemoto T. 1982; Characterization of the respiration-dependent Na+ pump in the marine bacterium I Vibrio alginolyticus . J Biol Chem 257:10007–10014
    [Google Scholar]
  19. Tokuda H., Nakamura T., Unemoto T. 1981; Potassium ion is required for the generation of pH-dependent membrane potential and ApH by the marine bacterium I Vibrio alginolyticus . Biochemistry 20:4198–4203
    [Google Scholar]
  20. Walderhaug M.O., Dosch D. C., Epstein W. 1987; Potassium transport in bacteria. In Ion Transport in Prokaryotes pp. 85–130 Edited by Rosen B., Silver S. . New York: Academic Press;
    [Google Scholar]
  21. Walderhaug M. O., Litwack E. D., Epstein W. 1989; Wide distribution of homologues of Escherichia coli Kdp K+-ATPase among Gram-negative bacteria. J Bacteriol 171:1192–1195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1781
Loading
/content/journal/micro/10.1099/13500872-140-7-1781
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error