1887

Abstract

The enzyme GDP-mannose dehydrogenase (GMD) is encoded by the gene, and previous genetic studies have indicated that it is a key regulatory and committal step in the biosynthesis of the polysaccharide alginate. In the present study the gene has been cloned into the broad-host-range expression vector pMMB66EH and GMD overexpressed in mucoid and genetically-related non-mucoid strains of . The metabolic approach of P. J. Tatnell, N. J. Russell & P. Gacesa (1993), 139, 119-127, has been used to investigate the subsequent effect of GMD overexpression on the intracellular concentrations of the key metabolites GDP-mannose and GDP-mannuronate, which have been related to GMD activity and total alginate production. The overexpression of in mucoid and non-mucoid strains resulted in elevated GMD activities compared to wild-type strains; there was a concomitant reduction in GDP-mannose concentrations and greatly increased GDP-mannuronate concentrations. However, significantly, alginate biosynthesis was detected only in mucoid strains and GMD overexpression resulted in only a marginal increase in exopolysaccharide production. The GDP-mannuronate concentrations in mucoid strains which overexpressed GMD were always significantly greater than those of GDP-mannose, indicating that GMD was no longer the major kinetic control point in the biosynthesis of alginate by these genetically-manipulated strains. The small but significant increase in alginate production by such strains together with the increased GDP-mannuronate concentrations is interpreted as meaning that a later enzyme of the alginate pathway has become the major kinetic control point and now determines the extent of alginate production. This study has provided direct metabolic evidence that GMD is the key regulatory enzyme in alginate biosynthesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1745
1994-07-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1745.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1745&mimeType=html&fmt=ahah

References

  1. Bagdasarian M. M., Amann E., Lurz R., Ruckett B., Bagdasarian M. 1983; Activity of the hybrid trp-lac (tac) promoters of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vector. Gene 26:273–282
    [Google Scholar]
  2. Boyer H.W., Rouliand-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  3. Blumenkrantz N., Asboe-Hansen G. 1973; A new method for quantitative determination of uronic acids. Anal Biochem 54:484–489
    [Google Scholar]
  4. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Chitnis C.E., Ohman D. E. 1990; Cloning of Pseudomonas aeruginosa alg G, which controls alginate structure. J Bacteriol 172:2894–2900
    [Google Scholar]
  6. Chitnis C.E., Ohman D. E. 1993; Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8:583–590
    [Google Scholar]
  7. Darzins A., Wang S. K., Vanags R. I., Chakrabarty A. M. 1985; Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa . J Bacteriol 164:516–524
    [Google Scholar]
  8. Deretic V., Konyecsni W. M. 1989; Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of alg R and identification of the second regulatory gene, alg Q . J Bacteriol 171:3680–3688
    [Google Scholar]
  9. Deretic V., Gill J. F., Chakrabarty A. M. 1987a; Gene alg D encoding GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa . J Bacteriol 169:351–358
    [Google Scholar]
  10. Deretic V., Gill J. F., Chakrabarty A. M. 1987b; Pseudomonas aeruginosa infection in cystic fibrosis; nucleotide sequence and transcriptional regulation of the alg D gene. Nucleic Acids Res 15:4567–4581
    [Google Scholar]
  11. Deretic V., Dikshit R., Konyecsni W. M., Chakrabarty A. M., Misra T. K. 1989; The alg R gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171:1278–1283
    [Google Scholar]
  12. Deretic V., Mohr C.D., Martin D. W. 1991; Mucoid Pseudomonas aeruginosa in cystic fibrosis; signal transduction and histone-like elements in the regulation of bacterial virulence. Mol Microbiol 5:1577–1583
    [Google Scholar]
  13. DeVault J.D., Berry A., Misra T. K., Darzins A., Chakrabarty A. M. 1989; Environmental sensory signals and microbial pathogenesis; Pseudomonas aeruginosa infection in cystic fibrosis. Biltechnology 7:352–357
    [Google Scholar]
  14. Dutta D.K.O'Donovan, G. A. 1987; Separation and quantitation of bacterial ribonucleoside triphosphates extracted with trifluoroacetic acid by anion-exchange high performance chromatography. J Chromatogr 385:119–124
    [Google Scholar]
  15. Evans L.R., Linker A. 1973; Production and characterisation of the slime polysaccharide of Pseudomonas aeruginosa . J Bacteriol 116:915–924
    [Google Scholar]
  16. Flynn J.L., Ohman D. E. 1988; Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and non-mucoid Pseudomonas aeruginosa: alg S controls expression of alg T . J Bacteriol 170:3228–3236
    [Google Scholar]
  17. Franklin M.J., Ohman D. E. 1993; Identification of alg F in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175:5057–5065
    [Google Scholar]
  18. Furste J. P., Pansegrau W., Frank R., Blocker H., Scholz P., Bagdasarian M. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tac P expression vector. Gene 48:119–131
    [Google Scholar]
  19. Fyfe J.A.M., and Govan J. R. W. 1980; Alginate synthesis in mucoid Pseudomonas aeruginosa chromosomal locus involved in control. J Gen Microbiol 119:413–422
    [Google Scholar]
  20. Goldberg J.B., Ohman D. E. 1987; Construction and characterization of Pseudomonas aeruginosa alg B mutants: role of a/gB in high-level production of alginate. J Bacteriol 169:1593–1602
    [Google Scholar]
  21. Govan J.R.W., Glass S. 1990; The microbiology and therapy of cystic fibrosis lung infections. Microbiol Rev 1:19–28
    [Google Scholar]
  22. Hobbie J. E., Daley R. I., Jasper S. 1977; Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  23. Holloway B. W., Krishnapillai V., Margan A. F. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102
    [Google Scholar]
  24. Kelly N. M., MacDonald M. H., Martin N., Nicas T., Hancock R. E. W. 1990; Comparison of the outer membrane protein and lipopoh saccharide profiles of mucoid and non-mucoid Pseudomonas aeruginosa. J Clin Microbiol 28:2017–2021
    [Google Scholar]
  25. Knierai Y. A., Vinogradov E. V., Kocharova N. A., Paramonov N. A., Kochetkov N. K., Dimitrev B. A., Stanislavsky E. S., Lanyi B. 1988; The structure of O-specific polysaccharides and serological classification of Pseudomonas aeruginosa. Acta Microbiol Hung 35:3–24
    [Google Scholar]
  26. Konyecsni W.M., Deretic V. 1990; DN A sequence and expression analysis of alg P and algQ components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: alg P contains multiple direct repeats. J Bacteriol 172:2511–2520
    [Google Scholar]
  27. Kornfield R.H., Ginsburg V. 1966; Control of the synthesis of GDP-mannose and GDP-fucose in bacteria. Biochim Biophys Acta 117:79–87
    [Google Scholar]
  28. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  29. Lam M.Y.C., McGroaty E. J., Kropinski A. M., MacDonald L. A., Pedersen S. S., Hoiby N., Lam J. S. 1989; Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. Clin Microbiol 27:962–967
    [Google Scholar]
  30. Lightfoot J., Lam J. S. 1993; Chromosomal mapping, expression and synthesis of lipopolysaccharide in Pseudomonas aeruginosa: a role for guanosine diphospho-(GDP)-D-mannose. Mol Microbiol 8:771–782
    [Google Scholar]
  31. Lin T.Y., Hassid Z. 1966; Pathway of alginic acid synthesis in the marine brown alga Fucus gardneri (Silva). J Biol Chem 241:5284 –5297
    [Google Scholar]
  32. Martins L.O., Sa'-Correia I. 1991; Alginate biosynthesis in mucoid recombinants of Pseudomonas aeruginosa overproducing GDP-mannose dehydrogenase. Enzyme Microb Technol 13:385–389
    [Google Scholar]
  33. McIntosh I., Govan J. R. W., Brock D. J. H. 1992; Detection of Pseudomonas aeruginosa in sputum from cystic fibrosis patients by the polymerase chain reaction. Mol Cell Probes 6:299–304
    [Google Scholar]
  34. Mohr C. D., Gibler N. S., Deretic V. 1991; Alg R, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the alg D promoter located unusually far upstream from the mRNA start site. J Bacteriol 173:5136–5143
    [Google Scholar]
  35. Morales V., Bagdasarian M. M., Bagdasarian M. 1990; Promiscuous plasmids of the inc Q group: mode of relication and use for gene cloning in Gram-negative bacteria. In Pseudomonas: Biotransformations Pathogenesis and Evolving Biotechnology pp. 229–241 Edited by Silver S., Chakrabarty A. M. , Iglewski B., Kaplan S. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Narbad A., Russell N.J., Gacesa P. 1988; Radiolabelling patterns in alginate of Pseudomonas aeruginosa synthesised from specifically-labelled 14C-monosaccharide precursors. Microbios 54:171–179
    [Google Scholar]
  37. Narbad A., Gacesa P., Russell N.J. 1990; Biosynthesis of alginate. In Pseudomonas Infection and Alginates, Biochemistry, Genetics and Pathology pp. 181–205 Edited by Gacesa P., Russell N. J. . London: Chapman and Hall;
    [Google Scholar]
  38. Ohman D.E., Chakrabarty A. M. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect immun 33:142–148
    [Google Scholar]
  39. Ohman D.E., Chakrabarty A. M. 1982; Utilization of human respiratory secretion by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun 37:662–669
    [Google Scholar]
  40. Ohman D. E., Goldberg J. B., Flynn J. L. 1990; Molecular analysis of the genetic switch activating alginate production. In Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnolog pp. 28–35 Edited by Silver S., Chakrabarty A. M. , Iglewski B., Kaplan S. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Pindar D.F., Bucke C. 1975; The biosynthesis of alginic acid by Apptobacter vinelandii. Biochem J 152:617–622
    [Google Scholar]
  42. Preiss J. 1964; Sugar nucleotide reactions in Arthrobacter. Part II Biosynthesis of guanosine diphosphomannuronate. J Biol Chem 239:3127–3132
    [Google Scholar]
  43. Pugashetti B. K., Vadas L., Pritar H. S., Feingold D. S. 1983; GDP-mannose dehydrogenase and biosynthesis of alginate-like polysaccharide in a mucoid strain of Pseudomonas aeruginosa . J Bacteriol 153:1107–1110
    [Google Scholar]
  44. Roychoudhury S., May T. B., Gill J. F., Singh S. K., Feingold D. S., Chakrabarty A. M. 1989; Purification and characterisation of GDP-mannose dehydrogenase, a key enzyme in the biosynthesis of alginate bv Pseudomonas aeruginosa. J Biol Chem 264:9380–9385
    [Google Scholar]
  45. Russell N.J., Gacesa P. 1988; Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol Aspects Med 10:1–91
    [Google Scholar]
  46. Russell N. J., Tatnell P. J., Gacesa P. 1992; The regulation of alginate biosynthesis by mucoid Pseudomonas aeruginosa . In Cystic Fibrosis, Basic and Clinical Research pp. 81–92 Edited by Hoiby N., Pedersen S. S. . Amsterdam: Excerpta Medica;
    [Google Scholar]
  47. Sa'-Correia I., Darzins A., Wang S. K., Berry A., Chakrabarty A. M. 1987; Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phospho-mannose isomerase, phosphomannomutase and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmt) gene. J Bacteriol 169:3224–3231
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Eaboratory Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  49. Sherbrock-Cox V., Russell N. J., Gacesa P. 1984; The purification and chemical characterization of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa . Carbobydr Ret 135:147–154
    [Google Scholar]
  50. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnolog 1:784–791
    [Google Scholar]
  51. Tatnell P. J., Russell N. J., Gacesa P. 1993; A metabolic study of the activity of GDP-mannose dehydrogenase and concentrations of activated intermediates of alginate biosynthesis in Pseudomonas aeruginosa . J Gen Microbiol 139:119–127
    [Google Scholar]
  52. Woodland H.R., Pestell R. Q. W. 1972; Determination of the nucleoside triphosphate content of eggs and oocytes of Xenopns Jaevis. Biochem J 127:597–605
    [Google Scholar]
  53. Zielinski N. A., DeVault J. D., Roychoudhury A., May T. B., Kimbara K., Kato J., Shinabarger D., Kitano K., Berry A., Misra T. K., Chakrabarty A. M. 1990; Molecular genetics of alginate biosynthesis in Pseudomonas aeruginosa . In Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnolog pp. 15–27 Edited by Silver S., Chakrabarty A. M. , Iglewski B., Kaplan S. . Washington, DC: American Society for Microbiology;
    [Google Scholar]
/content/journal/micro/10.1099/13500872-140-7-1745
Loading
/content/journal/micro/10.1099/13500872-140-7-1745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error