1887

Abstract

Summary: A C dicarboxylic (pimelic) acid derivative is postulated as an intermediate in anaerobic degradation of benzoate. Four strains of Gram-negative, nitrate-reducing bacteria capable of growth with both pimelate and benzoate as sole carbon and energy source were isolated. The metabolism of strain LP-1, which was enriched from activated sludge with pimelate as substrate, was studied in detail. This strain grew only with oxygen or with oxidized nitrogen compounds as electron acceptor. In the presence of nitrate, a wide range of substrates excluding C compounds was degraded. The new isolate was catalase- and oxidase-positive, and had one single polar flagellum. Strain LP-1 was tentatively classified within the family The catabolism of pimelate and benzoate was studied in cell-free extracts of strain LP-1. Both acids were activated with coenzyme A in a Mg- and ATP-dependent reaction. The corresponding acyl-CoA synthetases were specifically induced by the respective growth substrate. Pimelate was also activated by CoA transfer from succinyl-CoA. Pimelyl-CoA was oxidized by cell-free extracts in the presence of potassium ferricyanide. Degradation to glutaryl-CoA and acetyl-CoA proceeded by a sequence of β-oxidation-like reactions. Glutaryl-CoA dehydrogenase and glutaconyl-CoA decarboxylase activities were expressed in cells grown with pimelate or benzoate, indicating the specific involvement of these enzyme activities in anaerobic degradation of these two acids. Enzyme activities responsible for further degradation of the resulting crotonyl-CoA to acetyl-CoA via classical β-oxidation were also detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-409
1994-02-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-409.html?itemId=/content/journal/micro/10.1099/13500872-140-2-409&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W. 1962; Variables influencing results and the precise definition of steps in gram staining as a means of standardizing the result obtained. Stain Technol 37 139 155
    [Google Scholar]
  2. Bergmeyer H. U. 1983 Methods of Enzymatic Analysis , 3rd edn. vols I–III Weinheim: Verlag Chemie;
    [Google Scholar]
  3. Blakley E. R. 1978; The microbial degradation of cyclohexane- carboxylic acid by a β-oxidation pathway with simultaneous induction to the utilization of benzoate. Can J Microbiol 24 847 855
    [Google Scholar]
  4. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Eeptospira and flagella. source>J Bacteriol 89 899 900
    [Google Scholar]
  5. Brune A., Schink B. 1990; Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici . source>J Bacteriol 172 1070 1076
    [Google Scholar]
  6. Buckel W. 1986; Biotin-dependent decarboxylases as bacterial sodium pumps: purification and reconstitution of glutaconyl-CoA decarboxylase from Acidaminococcus fermentans . Methods Enzymol 125 547 558
    [Google Scholar]
  7. Cashion P., Hoder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81 461 466
    [Google Scholar]
  8. Chaney A. L., Marbach E. P. 1962; Modified reagents for the determination of urea and ammonia. Clin Chem 8 130 132
    [Google Scholar]
  9. Cooper T. G. 1981 In Biochemische Arbeitsmethoden pp 49 51 Berlin: De Gruyter;
    [Google Scholar]
  10. D’Ans J., Lax E. 1983; In Taschenbuch fur Chemiker und Physiker. , 4th edn. vol. II Organische Verbindungen pp. 1003 1006 Berlin: Springer Verlag;
    [Google Scholar]
  11. Dutton P. L., Evans W. C. 1968; The photometabolism of benzoic acid by Rhodopseudomonas palustris a new pathway of aromatic ring metabolism. Biochem J 109 5
    [Google Scholar]
  12. Eisenberg P. M. A., Star C. 1968; Synthesis of 7-oxo-8-amino- pelargonic acid, a biotin vitamer, in cell-free extracts of Escherichia coli biotin auxotrophs. J Bacterial 96 1291 1297
    [Google Scholar]
  13. Evans W. C., Fuchs G. 1988; Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42 289 317
    [Google Scholar]
  14. Geissler J. F., Harwood C. S., Gibson J. 1988; Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170 1709 1714
    [Google Scholar]
  15. Gerhardt P. 1984 In Manual of Methods of General Bacteriology pp. 413 420 Washington DC: American Society for Microbiology;
    [Google Scholar]
  16. Gottschalk G. 1986 In Bacterial Metabolism pp. 43 55 New York: Springer Verlag;
    [Google Scholar]
  17. Gregersen T. 1978; Rapid method for distinction of Gram- negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5 123 127
    [Google Scholar]
  18. Guyer M., Hegeman G. 1969; Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J Bacteriol 99 906 907
    [Google Scholar]
  19. Hartel U., Eckel E., Koch J., Fuchs G., Linder D., Buckel W. 1993; Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch Microbiol 159 174 181
    [Google Scholar]
  20. Hasegawa Y., Hamano K., Obata H. 1982; Microbial degradation of cycloheptanone. Agric Biol Chem 46 1139 1143
    [Google Scholar]
  21. Kamen M. D., Horio T. 1970; Bacterial cytochromes. I. Structural aspects. Annu Rev Biochem 39 673 700
    [Google Scholar]
  22. Koch J., Eisenreich W., Bacher A., Fuchs G. 1993; Products of enzymatic reduction of benzoyl-CoA, a key intermediate in anaerobic aromatic metabolism. Eur J Biochem 211 649 661
    [Google Scholar]
  23. Lange B., Vejdelek Z. J. 1980 Photometrische Analyse Weinheim: Verlag Chemie;
    [Google Scholar]
  24. Lynen F., Ochoa S. 1953; Enzymes of fatty acid metabolism. Biochim Biophys Acta 12 299 314
    [Google Scholar]
  25. Matthies C., Schink B. 1993; Anaerobic degradation of long- chain dicarboxylic acids by methanogenic enrichment cultures. FEMS Microbiol Lett 111 177 182
    [Google Scholar]
  26. Merkel S. M., Eberhard A. E., Gibson J., Harwood C. S. 1989; Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris . J Bacteriol 171 1 7
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int JSystBacteriol 39 159 167
    [Google Scholar]
  28. Numa S., Ishimura Y., Nakazawa T., Okazaki T., Hayaishi O. 1964; Enzymic studies on the metabolism of glutarate in Pseudomonas . J Biol Chem 239 3915 3926
    [Google Scholar]
  29. Palleroni N. J. 1984; Family I. Pseudomonadaceae. In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141 219 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  30. Pfennig N. 1978; Rhodocycluspurpureus gen. nov., sp. nov., a ringshaped, vitamin B12-requiring member of the family Rhodo- spirillaceae. Int J Syst Bacteriol 28 283 288
    [Google Scholar]
  31. Procházková L. 1959; Bestimmung der Nitrate im Wasser. Anal Chem 167 254 260
    [Google Scholar]
  32. Rudolphi A., Tschech A., Fuchs G. 1991; Anaerobic degradation of cresols by dinitrifying bacteria. Arch Microbiol 155 238 248
    [Google Scholar]
  33. Schennen U., Braun K., Knackmuss H.-J. 1984; Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J Bacteriol 161 321 325
    [Google Scholar]
  34. Schink B., Brune A., Schnell S. 1992; Anaerobic degradation of aromatic compounds. In Microbial Degradation of Natural Products pp. 218 242 Edited by Winkelmann G. Weinheim: Verlag Chemie;
    [Google Scholar]
  35. Schnell S., Schink B. 1991; Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini . Arch Microbiol 155 183 190
    [Google Scholar]
  36. Simon E. J., Shemin D. 1953; The preparation of Vsuccinyl coenzyme A. J Am Chem Soc 75 2520
    [Google Scholar]
  37. Stams A. J. M., Kremer D. R., Nicolay K., Weenk G. H., Hansen T. A. 1984; Pathway of propionate fermentation in Desulfobulbus propionicus . Arch Microbiol 139 167 173
    [Google Scholar]
  38. Stern J. R. 1956; Optical properties of acetoacetyl-J-coenzyme A and its metal chelates. J Biol Chem 221 33 44
    [Google Scholar]
  39. Suzuki F., Zahler W. L., Emerich D. W. 1987; Acetoacetyl-CoA thiolase of Bradyrhigobium japonicum bacteroids: purification and properties. Arch Biochem Biophys 254 272 281
    [Google Scholar]
  40. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Eett 25 125 128
    [Google Scholar]
  41. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41 100 180
    [Google Scholar]
  42. Tschech A., Fuchs G. 1987; Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148 213 217
    [Google Scholar]
  43. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137 163 167
    [Google Scholar]
  44. van Versefeld H. W., Meijer E. M., Stouthamer A. H. 1977; Energy conservation during nitrate respiration in Paracoccus denitrificans . Arch Microbiol 122 17 23
    [Google Scholar]
  45. de Vos P., van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., de Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39 35 49
    [Google Scholar]
  46. Weimer P. J., Zeikus G. 1977; Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum . Appl Environ Microbiol 33 289 297
    [Google Scholar]
  47. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate- reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacterpostgatei gen. nov., sp. nov. Arch Microbiol 129 395 400
    [Google Scholar]
  48. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134 286 294
    [Google Scholar]
  49. Ziegler K., Buder R., Winter J., Fuchs G. 1989; Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch Microbiol 151 171 176
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-409
Loading
/content/journal/micro/10.1099/13500872-140-2-409
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error