1887

Abstract

Summary: encounters a variety of acid conditions during both its natural and pathogenic existence. The ability of this organism to respond transcriptionally to low pH is an area of active interest but little knowledge. As part of an ongoing investigation of low-pH adaptation, 18 pH-controlled operon fusions in have been identified (15 in this study) and categorized into at least 11 different loci. They include (at 57 min), (99 min), (90-93 min), (, 45 min), , (33-36 min), (93 min), (33-36 min), (59 min), (54 min) and (63 min). All but two were induced by low pH. One of the exceptions, the iron-regulated locus, was induced at high pH. The unusual locus was induced by low pH under semiaerobic conditions but high pH under aerobic conditions. Most of the other genes were expressed best under anaerobic conditions. Many of these genes exhibited strict co-inducer requirements for small molecules to be expressed in minimal medium. These included iron for , tyrosine for and , mannose for , formate for , lysine for , and unknown components of complex medium for and . Six regulatory circuits were revealed involving at least five regulatory loci ( and ). As part of the adaptive response to low pH, will induce an acid protection system called the acid tolerance response (ATR). As has been shown for mutations, the regulatory mutation interfered with the normal induction of this system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-341
1994-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-341.html?itemId=/content/journal/micro/10.1099/13500872-140-2-341&mimeType=html&fmt=ahah

References

  1. Aliabadi Z., Warren F., Mya S., Foster J. W. 1986; Oxygen-regulated stimulons of Salmonella typhimurium identified by Mu^Ap/iw) operon fusions. J Bacteriol 165:780–786
    [Google Scholar]
  2. Aliabadi Z., Park Y. K., Slonczewski J. L., Foster J. W. 1988; Novel regulatory loci controlling oxygen and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 170:842–851
    [Google Scholar]
  3. Auger E. A., Redding K. E., Plumb T., Childs L. C. Meng, S.-Y., Bennett G. N. 1989; Construction of lac fusions to the inducible arginine-and lysine decarboxylase genes of Escherichia coli K-12. Mol Microbiol 3:609–620
    [Google Scholar]
  4. Bagg A., Neilands J. B. 1987; Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to hind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477
    [Google Scholar]
  5. Benson N. R., Goldman B. S. 1992; Rapid mapping in Salmonella typhimurium with Muc/-P22 prophages. J Bacteriol 174:1673–1681
    [Google Scholar]
  6. Beaumont M. D., Hassan H. M. 1992; Characterization of /ra«j-acting regulatory elements affecting the expression of Mn-superoxide dismutase (sod A) in Escherichia coli. Curr Microbiol 25:135–141
    [Google Scholar]
  7. Birkman A., Zinoni F., Sawers G. Bock, A. 1987; Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of E. coli. Arch Microbiol 148:44–51
    [Google Scholar]
  8. Buchmeier N. A. Heffron, F. 1990; Induction of Salmonella stress proteins upon infection of macrophages. Science 248:730–732
    [Google Scholar]
  9. Chumley F. G., Menzel R., Roth J. R. 1978; Hfr-formation directed by Tn 10. Genetics 91:639–655
    [Google Scholar]
  10. Cotter P. A., Darie S., Gunsalas R. P. 1992; The effect of iron limitation of the aerobic and anaerobic electron transport pathway genes in Escherichia coli. FEMS Microbiol Eett 100:227–232
    [Google Scholar]
  11. Davis R. W., Botstein D., Roth J. R. 1980; A Manual for Genetic Engineering. Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  12. Ernst R. K., Dombroski D. M. Merrick, J. 1990; Anaerobiosis, type 1 fimbriae and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. Infect Immun 58:2014–2016
    [Google Scholar]
  13. Finlay B. B., Falkow S. 1989; Salmonella as an intracellular parasite. Mol Microbiol 3:1833–1841
    [Google Scholar]
  14. Forst S., Douglas J., Rampersaud A. Inouye, M. 1990; In vivo phosphorylation of OmpR, the transcriptional activator of ompF and ompC genes in Escherichia coli. J Bacteriol 172:3473–3477
    [Google Scholar]
  15. Foster J. W. 1991; Salmonella acid shock proteins are required for the acid tolerance response. J Bacteriol 173:6896–6902
    [Google Scholar]
  16. Foster J. W. 1993; The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987
    [Google Scholar]
  17. Foster J. Aliabadi, Z. 1989; pH -regulated gene expression in Salmonella', genetic analysis of aniG and cloning of the ear A regulator. Mol Microbiol 3:1605–1615
    [Google Scholar]
  18. Foster J. W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172:771–778
    [Google Scholar]
  19. Foster J. W., Hall H. K. 1991; Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135
    [Google Scholar]
  20. Foster J. W., Hall H. K. 1992; Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron and pH-regulated protein synthesis. J Bacteriol 174:4317–4323
    [Google Scholar]
  21. Gale E. F., Epps H. M. R. 1942; The effect of the pH of the medium during growth on the enzymic activities of bacteria (E. coli and M. lysodiekticus) and the biological significance of the changes produced. Biochem J 36:600–619
    [Google Scholar]
  22. Hantke K. 1981; Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol & Gen Genet 182:288–292
    [Google Scholar]
  23. Hantke, K. 1987; Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K12: fur not only affects iron metabolism. Mol & Gen Genet 210:135–139
    [Google Scholar]
  24. Heatwole V. M., Somerville R. L. 1991; The tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressor in Escherichia coli K12. J Bacteriol3601–3604
    [Google Scholar]
  25. Hirshfield I. N., Tenreiro R., Vanbogelen R. A., Neidhardt F. C. 1984; Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern. J Bacteriol 158:615–620
    [Google Scholar]
  26. Holley E. A., Foster J. W. 1982; Bacteriophage P22 as a vector for Mu mutagenesis in Salmonella typhimurium-. isolation of nad-lac and pnc—lac gene fusions. J Bacteriol 152:959962
    [Google Scholar]
  27. Hughes, K. Roth, J. 1988; Transitory m-complementation: a general method for providing transposase to defective transposons. Genetics 119:9–12
    [Google Scholar]
  28. Hyde, M. Portalier, R. 1987; Regulation of major outer membrane porin proteins of E. coli K-12 by pH. Mol & Gen Genet 208:511–517
    [Google Scholar]
  29. Lee C. A. Falkow, S. 1990; The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA 87:4304–4308
    [Google Scholar]
  30. Malloy S. R., Nunn W. D. 1981; Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112
    [Google Scholar]
  31. Malloy S. R., Roth J. R. 1983; Regulation of proline utilization in Salmonella typhimurium-. characterization of put-.: Mud(Aplac) operon fusions. J Bacteriol 154:561–568
    [Google Scholar]
  32. Mat-Jan F., Alam K. Y., Clark D. P. 1989; Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348
    [Google Scholar]
  33. Mekalanos J. J. 1992; Environmental signals controlling ex¬pression of virulence determinants in bacteria. J Bacteriol 174:1–7
    [Google Scholar]
  34. Meng S.-Y., Bennett G. 1992a; Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669
    [Google Scholar]
  35. Meng S.-Y., Bennett G. 1992b; Regulation of the Escherichia coli cad operon: location of a site required for acid induction. J Bacteriol2670–2678
    [Google Scholar]
  36. Miller J. H. 1972; Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
    [Google Scholar]
  37. Morgan R. W., Christman M. F., Jacobson F. S., Sturz G., Ames B. N. 1986; Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83:8059–8063
    [Google Scholar]
  38. Pecher A., Zinoni F., Jatisatienr C., Wirth R., Hennecke H. Bock, A. 1983; On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch Microbiol 136:131–136
    [Google Scholar]
  39. Sarsero J. P., Wookey P. J., Rottard A. J. 1991; Regulation of expression of the Escherichia coli K-12 mtr gene by TyrR protein and Trp repressor. J Bacteriol 173:4133–4143
    [Google Scholar]
  40. Sawers, G. Btick, A. 1989; Novel transcriptional control of pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498
    [Google Scholar]
  41. Schlensog, V. Btick, A. 1990; Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 4:1319–1326
    [Google Scholar]
  42. Slonczewski J. L., Gonzalez T. N. Bartholomew, M., Holt N. J. 1987; M undirected lac/ fusions regulated by acid pH in Escherichia coli. J Bacteriol 169:3001–3006
    [Google Scholar]
  43. Spector M. P., Aliabadi Z. Gonzalez, T. , Foster J. W. 1986; Global control in Salmonella typhimurium: two-dimensional electro¬phoretic analysis of starvation-, anaerobiosis-and heat shock-inducible proteins. J Bacteriol 168:420–424
    [Google Scholar]
  44. Spector M. P., Park Y. K., Tirgari S. Gonzalez, T. , Foster J. W. 1987; Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using M undirected lacZ operon fusions. J Bacterial 170:345–351
    [Google Scholar]
  45. Tsai S. P., Hartin R. J. Ryu, J. 1989; Transformation in restriction Salmonella typhimurium LT2. T Gen Microbiol 135:2561–2567
    [Google Scholar]
  46. Valone S. E., Chikami G. K., Miller V. L. 1993; Stress induction of the virulence proteins (SpvA, -B and -C) from native plasmid pSDL2 of Salmonella dublin. Infect Immun 61:705–713
    [Google Scholar]
  47. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escheri¬chia coli'. partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  48. Watson N., DunYak D. S., Rosey E. L., Slonczewski J. L., Olsen E. R. 1992; Identification of elements involved in tran¬scriptional regulation of the Escherichia coli cad operon by external pH. J Bacterial 174:530–540
    [Google Scholar]
  49. Youderian P., Sugino P., Brewer K. L., Higgins N. P. Elliot, T. 1988; Packaging specific segments of the Salmonella chromosome with locked-in Mu^/-P22 prophages. Genetics 118:581–592
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-341
Loading
/content/journal/micro/10.1099/13500872-140-2-341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error