1887

Abstract

Summary: From a partial 3AI library of A3(2) DNA in pIJ916, two hybrid plasmids pGX1 and pGX2 were isolated that complemented A3(2) or arginine auxotrophs. Subcloning DNA from pGX1 in the expression vector pRK9 containing the promoter gave rise to one plasmid, pZC2, that complemented auxotrophs, and another, pZC1, that complemented only the first three. The plasmids were markedly unstable in the various complemented hosts, to varying extents; pZC1 was characterized further as providing the stablest host/plasmid combinations. deletion of part of the vector's promoter did not affect complementation of the and auxotrophs, implying that the A3(2) genes may be expressed from their own promoter. The promoter-less plasmids included isolates, such as pZC177, that had suffered extensive further deletion without loss of complementing ability. Extracts of an auxotroph carrying pZC177 showed ornithine acetyltransferase activity, indicating that the complementing gene is of the type. The complementation properties of deletion derivatives of pZC177 indicated the gene order Part of and the upstream region were sequenced; an ORF was identified whose predicted product showed appreciable homology with the and ArgC polypeptide. Upstream of this ORF a consensus-type promoter and ribosome binding site could be discerned; overlapping its promoter was a sequence with homology to arginine operators in these two other organisms. An frameshift in had a polar effect on expression in of and , suggesting that the three genes are transcribed in the same direction, possibly as an operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-2-311
1994-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/2/mic-140-2-311.html?itemId=/content/journal/micro/10.1099/13500872-140-2-311&mimeType=html&fmt=ahah

References

  1. Adams C. W., Fornwald J. A., Schmidt F. J., Rosenberg M., Brawner M. E. 1988; Gene organisation and structure of the Streptomjces lividans gal operon. J Bacteriol 170:203–212
    [Google Scholar]
  2. Akrigg D., Bleasby A. J., Dix N. I. M., Findlay J. B. C., North A. C. T., Parry-Smith D., Wootton J. C., Blundell T. L., Gardner S. P., Hayes F., Islam S., Sternberg M. J. E., Thornton J. M., Tickle I. J., MurrayRust P. 1988; A protein sequence/structure database. Nature 335:745
    [Google Scholar]
  3. Altenbucher J., Eichenseer C. 1991 A new system to study DNA amplifications in Streptomjces lividans. In Genetics and Product Formation in Streptomjces pp. 253–263 Edited by Baumberg S., Kriigel H., Noack D. New York & London: Plenum Press;
    [Google Scholar]
  4. Baibas P., Soberon X., Merino E., Zurita M., Lomeli H., Valle Flores N., & Bolivar F. 1986; Plasmid vector pBR322 and its special-purpose derivatives - a review. Gene 50:3–40
    [Google Scholar]
  5. Baumberg S. 1981; The evolution of metabolic regulation. In Molecular and Cellular Aspects of Microbial Evolution. 32nd Symposium of the Society for General Microbiology pp. 229–272 Edited by Carlile M. J., Collins J. F., Moseley B. E. B. Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Birnboim H. C., & Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dve binding. Anal Biocbem 72:248–254
    [Google Scholar]
  8. Bretscher A. P., & Baumberg S. 1976; Divergent transcription of the argECBH cluster of Escherichia coli K12. Mutations which alter control of enzyme synthesis. J Mol Biol 102:205–220
    [Google Scholar]
  9. Cullum J., Flett F., Gravius B., Hranueli D., Miyashita K., Pigac J., Rauland U., & Redenbach M. 1991; Analysis of amplifications and deletions in Streptomyces species. In Genetics and Product Formation in Streptomyces pp. 265–272 Edited by Baumberg S., Kriigei H., Noack D. New York & London: Plenum Press;
    [Google Scholar]
  10. Cunin R., Glansdorff N., Pi£rard A., & Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352
    [Google Scholar]
  11. Czaplewski L. G., North A. K., Smith M. C. M., Baumberg S., Stockley P. G. 1992; Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol Microbiol 6:267–275
    [Google Scholar]
  12. Davis R. H. 1986; Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev 50:280–313
    [Google Scholar]
  13. De Deken R. E. 1963; Biosynthese de l’arginine chez la levure. Biochim Biophys Acta 78:606–616
    [Google Scholar]
  14. Denes G. 1970; Ornithine acetyltransferase (Chlamydomonas rein- hardtii). Methods Enymol 17A:271–275
    [Google Scholar]
  15. Glansdorff N. 1987 Biosynthesis of arginine and polyammes. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 321–344 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Hercomb J., Thierbach G., Baumberg S., Parish J. H. 1987; Cloning, characterization and expression in Escherichia coli of a leucine biosynthetic gene from Streptomyces rochei. J Gen Microbiol 133:317–322
    [Google Scholar]
  17. Hindle Z. 1990 A Study of Genes of Arginine Biosynthesis from StreptomycesPhD. thesis University of Leeds;
    [Google Scholar]
  18. Hood D. W., Heidstra R., Swoboda U. K., Hodgson D. A. 1992; Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism - a review. Gene 115:5–12
    [Google Scholar]
  19. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward i. M., Schrempf H. 1985; Genetic Manipulation of Streptomyces: a Eaboratory Manual. Norwich: The John Innes Foundation
    [Google Scholar]
  20. Ishihara H., Nakano M. M., Ogawara H. 1985; Cloning of a gene from Streptomyces species complementing argG mutations. J Antibiot 38:787–794
    [Google Scholar]
  21. Ishihara H., Urabe H., Kasama H., 8c Ogawara H. 1991; Sequence of the gene encoding argininosuccinate synthetase in Streptomyces coelicolor A3(2). Actinomycetologia 5:14–17
    [Google Scholar]
  22. Lim C.-K., Smith M. C. M., Petty J., Baumberg S., Wootton J. C. 1989; Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases. J Gen Microbiol 135:3289–3302
    [Google Scholar]
  23. Lim D., Oppenheim J. D., Eckhardt T., 8i Maas W. K. 1987; Nucleotide sequence of the argR gene of Escherichia coli K12 and isolation of its product, the arginine repressor. Proc Natl Acad Sci USA 84:6697–6701
    [Google Scholar]
  24. Limauro D., Avitabile S., Cappellano M., Puglia A. M., Bruni C. B. 1990; Cloning and characterisation of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gem 90:31–41
    [Google Scholar]
  25. Ludovice M., Martin J. F., Carrachas P., Liras P. 1992; Characterization of the Streptomyces clavuligerus argC gene encoding IV-acetylglutamyl-phosphate reductase: expression in Streptomyces lividans and effect on clavulanic acid production. J Bacteriol 174:4606–4613
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., & Sambrook J. 1982; Molecular Cloning: a Eaboratory Manual. Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
    [Google Scholar]
  27. Messing J., Vieira J. 1982; A new pair of Ml3 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  28. Mountain A., Mann N. H., Munton R. N., Baumberg S. 1984; Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis. Mol & Gen Genet 197:82–89
    [Google Scholar]
  29. Mountain A., McChesney J., Smith M. C., M. 8 Baumberg S. 1986; Gene sequence encoding early enzymes of arginine synthesis ithin a cluster inBacillus subtilis as revealed by cloning inEscherichia coli. J Bacteriol 165:1026–1028
    [Google Scholar]
  30. Norrander J., Kempe T., & Messing J. 1983; Construction of improved Ml3 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  31. Ogaara H., Kasama H., Nashimoto K., Ohtsubo M., Higashi K., Urabe H. 1993; Cloning, sequence and expression of the argG gene from Streptomyces lavendulae. Gene 125:91–96
    [Google Scholar]
  32. O’Reilly M., oodson K., Dods B. C., A. Devine K. M. 1994 The citrulline biosynthetic operon, arg C-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by SpoOA. Mol Microbiol 11 in the Press;
    [Google Scholar]
  33. Padilla G., Hindle Z., Callis R., Corner A., Ludovice M., Liras P., Baumberg S. 1991; The relationship beteen primary and secondary metabolism in streptomycetes. In Genetics and Product Formation in Streptomyces pp. 35–45 Edited by Baumberg S., Kriigei H., Noack D. New York and London: Plenum Press;
    [Google Scholar]
  34. Parsot C., Boyen A., Cohen G. N., Glansdorff N. 1988; Nucleotide sequence of Escherichia coli argB and argC genes: comparison of IV-acetylglutamate kinase and N-acetylglutamate-^- semialdehyde dehydrogenase ith homologous and analogous enzymes. Gene 68:275–283
    [Google Scholar]
  35. Piendl W., Kochi S., Flett F., Cullum J. 1991; Analysis of large deletions and characterization of the deletion endpoints associated ith an amplifiable DNA region in Streptomyces lividans. In Genetics and Product Formation in Streptomyces pp. 273–281 Edited by Baumberg S., Kriigei H., Noack D. New York & London: Plenum Press;
    [Google Scholar]
  36. Sakanyan V., Kochikyan A., Mett I., Legrain C., Charlier D., Piérard A., Glansdorff N. 1992; A re-examination of the pathay for ornithine biosynthesis in a thermophilic and to mesophilic Bacillus species. J Gen Microbiol 138:125–130
    [Google Scholar]
  37. Sakanyan V., Charlier D., Legrain C., Kochikyan A., Mett I., Pigrard A., Glansdorff N. 1993; Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus-. dual function of ornithine acetyltransferase. J Gen Microbiol 139:393–402
    [Google Scholar]
  38. Schrempf H. 1991; Genetic instability in Streptomyces. In Genetics and Product Formation in Streptomyces pp. 245–252 Edited by Baumberg S., Kriigel H., Noack D. New York & London: Plenum Press;
    [Google Scholar]
  39. Smith C. P., Chater K. F. 1988a; Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3(2) and the identification of a closely associated transcription unit. Mol & Gen Genet 211:129–137
    [Google Scholar]
  40. Smith C. P., Chater K. F. 1988b; Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J Mol Biol 204:569–580
    [Google Scholar]
  41. Smith M. C. M., Mountain A., Baumberg S. 1990; Nucleotide sequence of the Bacillus subtilis argC gene encoding N- acetylglutamate-y-semialdehyde dehydrogenase. Nucleic Acids Res 18:4595
    [Google Scholar]
  42. Udaka S. 1966; Pathay-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621
    [Google Scholar]
  43. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-2-311
Loading
/content/journal/micro/10.1099/13500872-140-2-311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error