1887

Abstract

produces the β-lactam antibiotics penicillin N, O-carbamoyldeacetycelcephalosporin C and cephamycin C. We characterized a wild-type DNA region which restores antibiotic formation to a mutant strain named NP1, previously shown to exhibit depressed activities for two early enzymes of cephalosporin synthesis, δ-(-α-aminoadipyl)--cysteinyl--valine synthetase (ACVS) and isopenicillin N synthase (IPNS). -Lysine -aminotransferase (LAT) assays and α-AAA feeding experiments suggested that strain NP1 is a mutant. NP1 recovered LAT, ACVS and IPNS activities when transformed with the cloned region. DNA sequencing showed that this region encodes the entire LAT gene (), required for the conversion of -lysine to the β-lactam precursor -α-aminoadipic acid (α-AAA), as well as the upstream half of the ACVS gene (). The activities of ACVS and IPNS appear to depend upon LAT expression. Gene fusions constructed to investigate promoter activities in the cloned region support a model of interdependence in the expression of the genes for LAT, ACVS and IPNS ().

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3367
1994-12-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3367.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3367&mimeType=html&fmt=ahah

References

  1. Bailey C.R., Winstanley D.J. Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J Gen Microbiol 1986; 132:2945–2947
    [Google Scholar]
  2. Bailey C.R., Butler M.J., Normansell I.D., Rowlands R.T., Winstanley D.J. Cloning of a Streptomyces clavuligerus genetic locus involved in clavulanic acid biosynthesis. Bio ¡Technology 1984; 2:808–811
    [Google Scholar]
  3. Bibb M.J., Findlay P.R., Johnson M.W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 1984; 30:157–166
    [Google Scholar]
  4. Coque J.-J.R., Liras P., Laiz L., Martin J.F. A gene encoding lysine 6-aminotransferase, which forms /Mactam precursor a-aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. J Bacterial 1991a; 173:6258–6264
    [Google Scholar]
  5. Coque J.-J.R., Martin J.F., Calzada J.G., Liras P. The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Pénicillium chrysogenum. Mol Microbiol 1991b; 5:1125–1133
    [Google Scholar]
  6. Débarbouillé M., Arnaud M., Fouet A., Klier A., Rapaport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 1990; 172:3966–3973
    [Google Scholar]
  7. Garcia-Dominguez M., Liras P., Martin J.F. Cloning and characterization of the isopenicillin N synthase gene of Streptomyces griseus NRRL 3851 and studies of expression and complementation of the cephamycin pathway in Streptomyces clavuligerus. Antimicrob Agents Chemother 1991; 35:44–52
    [Google Scholar]
  8. Hopwood D.A., Bibb M.J., Chater K.F., Keiser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Scrempf H. Genetic Manipulation of Streptomyces : a Laboratory Manual 1985 Norwich: John Innes Foundation;
    [Google Scholar]
  9. Katz E., Thompson C.J., Hopwood D.A. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 1983; 129:2703–2714
    [Google Scholar]
  10. Kendall K.J., Cohen S.N. Complete nucleotide sequence of the Streptomyces lividans plasmid pIJlOl and correlation of the sequence with genetic properties. J Bacteriol 1988; 170:4634–4651
    [Google Scholar]
  11. Kern B.A., Hendlin D., Inamine E. L-Lysine e-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob Agents Chemother 1980; 17:679–685
    [Google Scholar]
  12. Kovacevic S., Tobin M.B., Miller J.R. The /Mactam biosynthesis genes for isopenicillin N epimerase and deacetoxy-cephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol 1990; 170:4669–4674
    [Google Scholar]
  13. Li Y., Dosch D.C., Woodman R.H., Floss H.G., Strohl W.R. Transcriptional organization and regulation of the nosiheptide resistance gene in Streptomyces actuosus. J Ind Microbiol 1991; 8:1–12
    [Google Scholar]
  14. Lomovskaya N.D., Mkrtumian N.M., Gostimskaya N.L., Danilenkov V.N. Characterization of temperate bacteriophage 0C31 isolated from Streptomyces coelicolor A3(2). J Virol 1972; 9:258–262
    [Google Scholar]
  15. McClure W.R. Mechanism and control of transcription initiation in prokaryotes. Amu Rev Biochem 1985; 54:171–204
    [Google Scholar]
  16. Madduri K., Stuttard C., Vining L.C. Lysine catabolism in Streptomyces spp. is primarily through cadaverine: /Mactam producers also make a-aminoadipate. J Bacteriol 1989; 171:299–302
    [Google Scholar]
  17. Madduri K., Stuttard C., Vining L.C. Cloning and location of a gene governing lysine e-aminotransferase, an enzyme initiating /Mactam biosynthesis in Streptomyces spp. J Bacteriol 1991; 173:985–988
    [Google Scholar]
  18. Mahro B., Demain A. In vivo conversion of penicillin N to a cephalosporin type antibiotic by a non-producing mutant of Streptomyces clavuligerus. Appl Microbiol Biotechnol 1987; 27:272–275
    [Google Scholar]
  19. Malmberg L.-H., Hu W.-S., Sherman D.H. Precursor flux control through targeted chromosomal insertion of the lysine e-aminotransferase (lat) gene in cephamycin C biosynthesis. J Bacteriol 1993; 175:6916–6924
    [Google Scholar]
  20. Marck C. ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 1988; 16:1829–1836
    [Google Scholar]
  21. Martin J.F. Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals. J Ind Microbiol 1992; 9:73–90
    [Google Scholar]
  22. Messing J. New Ml3 vectors for cloning. Methods Enzymol 1983; 101:20–78
    [Google Scholar]
  23. Murphy N., McConnell D.J., Cantwell B.A. The DNA sequence of the gene and genetic control sites for the excreted B subtilis enzyme-glucanase. Nucleic Acids Res 1984; 12:5355–5367
    [Google Scholar]
  24. Petrich A.K. Transcriptional analysis of the isopenicillin N synthase gene of Streptomyces clavuligerus 1993 PhD Thesis, University of Alberta, Edmonton, Canada;
    [Google Scholar]
  25. Petrich A.K., Wu X., Roy K.L., Jensen S.E. Transcriptional analysis of the isopenicillin N synthase-encoding gene of Streptomyces clavuligerus. Gene 1992; 111:77–84
    [Google Scholar]
  26. Piret J., Resendiz B., Mahro B., Zhang J.-Y., Serpe E., Romero J., Connors N., Demain A.L. Characterization and complementation of a cephalosporin-deficient mutant of Streptomyces clavuligerus NRRL 3585. Appl Micrbiol Biotechnol 1990; 32:560–567
    [Google Scholar]
  27. Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem 1986; 55:339–372
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  29. Schnetz K., Toloczki C., Rak B. β-Glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 1987; 169:2579–2590
    [Google Scholar]
  30. Seno E., T. & Baltz R.H. Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes. In Regulation of Secondary Metabolism in Actinomycetes 1989 Edited by Shapiro S. Boca Raton, FL: CRC Press; pp 1–48
    [Google Scholar]
  31. Smith D.J., Burnham M.K.R., Bull J.H., Hodgson J.E., Ward J.M., Browne P., Brown J.J., Barton J., Earl A.J., Turner G. β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 1990a; 9:741–747
    [Google Scholar]
  32. Smith D.J., Earl A.J., Turner G. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421 073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 1990b; 9:2743–2750
    [Google Scholar]
  33. Steinmetz M., Le Coq D., Aymerich S.T., Gonzy-Treboul G., Gay P. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol & Gen Genet 1985; 200:220–228
    [Google Scholar]
  34. Strohl W.R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Rer 1992; 20:961–974
    [Google Scholar]
  35. Tinoco I., Borer P.N., Dengler B., Levine M., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 1973; 246:40–41
    [Google Scholar]
  36. Tobin M.B., Kovacevic S., Madduri K., Hoskins J.A., Skatrud P.L., Vining L.C., Stuttard C., Miller J.R. Localization of the lysine e-aminotransferase (lat) and ¿-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine e-aminotransferase activity in Escherichia coli. J Bacteriol 1991; 173:6223–6229
    [Google Scholar]
  37. Uchiyama H., Weisblum B. N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamine-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene 1985; 38:103–110
    [Google Scholar]
  38. Ward J.M., Janssen G.R., Kieser T., Bibb M.J., Buttner M.J., Bibb M.J. Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol & Gen Genet 1986; 203:468–478
    [Google Scholar]
  39. Zhang J.-Y., Wolfe S., Demain A.L. Ammonium ions repress ¿-(L-a-aminoadipyl)-L-cysteine-D-valine synthetase in Streptomyces clavuligerus NRRL 3585. Can J Microbiol 1989a; 35:399–402
    [Google Scholar]
  40. Zhang J.-Y., Wolfe S., Demain A.L. Phosphate regulation of ACV synthetase and cephalosporin biosynthesis in Streptomyces clavuligerus. FEMS Microbiol Lett 1989b; 57:145–150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3367
Loading
/content/journal/micro/10.1099/13500872-140-12-3367
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error