1887

Abstract

Summary: We have examined the heat shock response of . After normal growth at 28 °C, a 10 min heat shock at 37 °C induced the synthesis of proteins with approximate values of 90000, 70000, 60000, 58000, 19000, 17000 and 13000. A monoclonal antibody raised against the cross-reacted with proteins of 60000 and 58000 in , suggesting that both were homologues. Hybridization of an to total DNA from also showed evidence for at least two homologues. One of these was cloned and completely sequenced, and showed close homology to sequences from other prokaryotes. The expression of this gene in failed to complement a mutation, either for growth at high temperature or for growth of bacteriophage δ. Hybridization of total DNA with a probe from this gene revealed the presence of a third putative gene. Two further hybridizing clones were analysed and found to consist of two additional sequences plus upstream regions containing putative genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-1-113
1994-01-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/1/mic-140-1-113.html?itemId=/content/journal/micro/10.1099/13500872-140-1-113&mimeType=html&fmt=ahah

References

  1. Ausubel F.M. Current Protocols In Molecular Biology. 1987 New York: Wiley Interscience;
    [Google Scholar]
  2. Badcoe I.G.V., Smith C.J., Wood S., Halsall D.J., Holbrook J.J., Lund P., Clarke A.R. Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 1991; 30:9195–9200
    [Google Scholar]
  3. Beringer I. E. R-Factor transfer in Rhiyobium leguminosarum. J Gen Microbiol 1974; 84:188–198
    [Google Scholar]
  4. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F.X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 1991; 30:1586–1591
    [Google Scholar]
  5. Del Sal G., Manfioletti G., Schneider C. The CTAB- DNA precipitation method — a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 1989; 7:514–519
    [Google Scholar]
  6. De Wit T.F.R., Bekelie S., Osland A., Miko T.L., Hermans P.W.M., van Soolingen P., Drijfhout J-W., Schoeningh R., Janson A.A.M., Thole J.E.R. Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol Microbiol 1992; 6:1995–2007
    [Google Scholar]
  7. Ellis R.J., van de Vies S.M. Molecular chaperones. Annu Rev Biochem 1991; 60:321–347
    [Google Scholar]
  8. Ferreyra R.G., Soncini F.C., Viale A.M. Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulphur bacterium Chromatium vinosum. J Bacteriol 1993; 175:1514–1523
    [Google Scholar]
  9. Fischer H.M., Babst M., Kaspar T., Acuna G., Arigoni F., Hennecke H. One member of a groESL like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 1993; 12:2901–2912
    [Google Scholar]
  10. Fisher M.T. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of Cpn60 (chaperonin-60) and ATP. Biochemistry 1992; 31:3955–3963
    [Google Scholar]
  11. Gething M.-J., Sambrook J. Protein folding in the cell. Nature 1992; 355:33–45
    [Google Scholar]
  12. Goloubinoff P., Gatenby A.A., Lorimer G.H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 1989; 337:44–47
    [Google Scholar]
  13. Gor D., Mayfield J.E. Cloning and nucleotide sequence of the Brucella abortus groE operon. Biochim Biophys Acta 1992; 1130:120–122
    [Google Scholar]
  14. Govezensky D., Greener T., Segal G., Zamir A. Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol 1991; 173:6339–6346
    [Google Scholar]
  15. Guglielmi G., Mazodier P., Thompson C.J., Davies J. A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three GroEL-like proteins in Streptomyces albus. J Bacteriol 1991; 173:7374–7381
    [Google Scholar]
  16. Hemmingsen S.M., Woolford C., van der Vies S.M., Tilly K., Dennis D.T., Georgopoulos C., Hendrix R.W., Ellis R.J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 1988; 333:330–334
    [Google Scholar]
  17. Holl-Neugebauer B., Rudolph R., Schmidt H., Buchner J. Reconstitution of a heat-shock effect in vitro-, influence of GroE on the thermal aggregation of α-glucosidase from yeast. Biochemistry 1991; 30:11609–11614
    [Google Scholar]
  18. Kong T.H., Coates A.R.M., Butcher P.D., Hickman C.J., Shinnick T.M. Mycobacterium-tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA 1993; 90:2608–2612
    [Google Scholar]
  19. Kundig C., Hennecke H., Gottfert M. Correlated physical and genetic map of the Bradyrhhobium japonicum 110 genome. Bacteriol 1993; 175:613–622
    [Google Scholar]
  20. Laminet A.A., Ziegelhoffer T., Georgopoulos C., Pluckthun A. The E coli heat-shock proteins GroEL and GroES modulate the folding of β-lactamase precursor. EMBO J 1990; 9:2315–2319
    [Google Scholar]
  21. Lehel C., Los D., Wada H., Gyorgyei J., Horvath I., Kovacks E., Murata N., Vigh L. A second groEL-like gene, organized in a groESL operon, is present in the genome of Synechocystis sp. PCC-6803. J Biol Chem 1993; 268:1901–1907
    [Google Scholar]
  22. Lindquist S., Craig E.A. The heat-shock proteins. Annu Rev Genet 1988; 22:631–677
    [Google Scholar]
  23. Martinez E., Bartolome B., de la Cruz F. pACYC184 derived cloning vectors containing the multiple cloning site and lacX alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 1988; 68:159–162
    [Google Scholar]
  24. Mendoza J.A., Rogers E., Lorimer G.H., Horowitz P.M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem 1991; 266:13044–13049
    [Google Scholar]
  25. Ohtaka C., Nakamura H., Ishikawa H. tructures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. J Bacteriol 1992; 174:1869–1874
    [Google Scholar]
  26. Rusanganwa E., Gupta R.S. Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 1993; 126:67–75
    [Google Scholar]
  27. Saibil H., Wood S. Chaperonins. Curr Opin Struct Biol 1993; 3:207–213
    [Google Scholar]
  28. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Schoen U., Schumann W. Molecular cloning, sequencing, and transcriptional analysis of the groESL operon from Bacillus stearothermophilus. J Bacteriol 1993; 175:2465–2469
    [Google Scholar]
  30. Segal G., Ron E.Z. Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpinloop structure. J Bacteriol 1993; 175:3083–3088
    [Google Scholar]
  31. Sherwood M.T. Improved synthetic medium for the growth of Rhizobium. J Appl Bacteriol 1970; 33:708–713
    [Google Scholar]
  32. Silhavy T.J., Berman M.L., Enquist L.W. Experiments with Gene Fusions. 1984 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Taguchi H., Konishi J., Ishii N., Yoshida M. A chaperonin from a thermophilic bacterium Thermus thermophilus that controls refoldings of several thermophilic enzymes. J Biol Chem 1991; 266:22411–22418
    [Google Scholar]
  34. Viitanen P.V., Donaldson G.K., Lorimer G.H., Lubben T.H., Gatenby A.A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 1991; 30:9716–9723
    [Google Scholar]
  35. Viitanen P.V., Gatenby A.A., Lorimer G.H. Purified chaperonin 60 (Cpn60) interacts with the non-native states of a multitude of Escherichia coli proteins. Protein Sci 1992; 1:363–369
    [Google Scholar]
  36. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 1991; 45:301–325
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-1-113
Loading
/content/journal/micro/10.1099/13500872-140-1-113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error