1887

Abstract

SUMMARY: A genetic locus, , located between and the operon in , and similar genes, and , near the locus of , were found to be involved in the transport of aromatic amino acids. Genetic lesions at these loci cause a variable diminution in uptake and accumulation of aromatic amino acids, alanine and glycine compared with the wild type. The F′ episome carries the locus. Curing an strain of the F′ episome which covers a chromosomal deletion from through the operon and regions, results in a 60 to 80 % decrease in tryptophan uptake. The introduction of F′ into a operon-deleted of low transport ability restores transport ability, suggesting that in this organism may be homologous with in In , tryptophan accumulation is normally increased by prior growth in -tryptophan, while in it is repressed. In both genera, the gene appears to have no effect on the tryptophan transport capabilities in response to changes in the concentration of -tryptophan in the medium. Tryptophan transport in the F′ hybrid was subject to repression, while in the strain which carries F′ covering the equivalent chromosomal deletion, an increase in tryptophan accumulation was shown after growth in -tryptophan-supplemented medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-90-2-203
1975-10-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/90/2/mic-90-2-203.html?itemId=/content/journal/micro/10.1099/00221287-90-2-203&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages pp. 454–460 New York: Interscience Publishers.;
    [Google Scholar]
  2. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanadine in Escherichia coli k12. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  3. Ames G. F. 1964; Uptake of amino acids by Salmonella typhimurium. Archives of Biochemistry and Biophysics 104:1–18
    [Google Scholar]
  4. Ames G. F., Roth J. R. 1968; Histidine and aromatic permeases of Salmonella typhimurium. Journal of Bacteriology 96:1742–1749
    [Google Scholar]
  5. Bauerle R. H., Margolin P. 1966; The functional organization of the tryptophan gene cluster in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America 56111–118
    [Google Scholar]
  6. Boezi J. A., Demoss R. D. 1961; Properties of a tryptophan transport system in Escherichia coli. Biochimica et biophysica acta 49:471–484
    [Google Scholar]
  7. Bouanchaud D. H., Scavizzi M. R., Chabbert Y. A. 1968; Elimination by ethidium bromide of antibiotic resistance in Enterobacteria and Staphylococci. Journal of General Microbiology 54:417–425
    [Google Scholar]
  8. Broda P. 1968; Ribonucleic acid synthesis and glutamate excretion in Escherichia coli. Journal of Bacteriology 96:1528–1534
    [Google Scholar]
  9. Brown K. D. 1970; Formation of aromatic amino acid pools in Escherichia coli K-12. Journal of Bacteriology 104:177–188
    [Google Scholar]
  10. Corwin L. M., Fanning G. R., Feldman F., Margolin P. 1966; Mutation leading to increased sensitivity to chromium in Salmonella typhimurium. Journal of Bacteriology 91:1509–1515
    [Google Scholar]
  11. Cox G. B., Gibson F., Luke R. K. J., Newton N. A., O’brien I. G., Rosenberg H. 1970; Mutations affecting iron transport in Escherichia coli. Journal of Bacteriology 104:219–226
    [Google Scholar]
  12. Dahl R., Wang R. J., Morse M. L. 1971; Effect of pleiotropic carbohydrate mutations (ctr) on tryptophan catabolism. Journal of Bacteriology 107:513–518
    [Google Scholar]
  13. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B-12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  14. Falkow S., Wohlhieter J. A., Citarella R. V., Baron L. S. 1964; Transfer of episomic elements to Proteus. I. Transfer of F-linked chromosomal determinants. Journal of Bacteriology 87:209–219
    [Google Scholar]
  15. Freundlich M., Lichstein H. C. 1960; Inhibitory effect of glucose on tryptophanase. Journal of Bacteriology 80:633–638
    [Google Scholar]
  16. Gemski P. Jun Stocker B. A. D. 1967; Transduction by bacteriophage P22 in nonsmooth mutants of Salmonella typhimurium. Journal of Bacteriology 93:1588–1597
    [Google Scholar]
  17. Gratia J. P. 1966; Studies on defective lysogeny due to chromosomal deletion in Escherichia coli. I. Single lysogens. Biken Journal 9:77–87
    [Google Scholar]
  18. Guerola N., Ingraham J. L., Cerdá-Olmedo E. 1971; Induction of closely linked multiple mutations by nitrosoguanidine. Nature New Biology 230:122–125
    [Google Scholar]
  19. Guest J. R. 1974; Gene-protein relationships of the a-keto acid dehydrogenase complexes of Escherichia coli k12: chromosomal location of the lipoamide dehydrogenase gene. Journal of General Microbiology 80:523–532
    [Google Scholar]
  20. Guroff G., Bromwell K. E. 1970; Phenylalanine uptake and phenylalanine-binding material in Comamonas sp.(ATCC11299a). Archives of Biochemistry and Biophysics 137:379–387
    [Google Scholar]
  21. Langley D., Guest J. R. 1974; Biochemical and genetic characteristics of deletion and other mutant strains of Salmonella typhimurium lt2 lacking α-keto acid dehydrogenase complex activities. Journal of General Microbiology 82:319–335
    [Google Scholar]
  22. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  23. Luria S. E., Burrous J. W. 1957; Hybridization between Escherichia coli and Shigella. Journal of Bacteriology 74:461–476
    [Google Scholar]
  24. Margolin P. 1963; Genetic fine structure of the leucine operon in Salmonella. Genetics 48:441–457
    [Google Scholar]
  25. Margolin P., Bauerle R. H. 1966; Determinants for regulation and initiation of expression of tryptophan genes. Cold Spring Harbor Symposia on Quantitative Biology 31:311–320
    [Google Scholar]
  26. Nakae T., Nikaido H. 1971; Multiple molecular forms of uridine diphosphate glucose pyrophosphorylase from Salmonella typhimurium. II. Genetic determination of multiple forms. Journal of Biological Chemistry 246:4397–4403
    [Google Scholar]
  27. Piperno J. R., Oxender D. L. 1968; Amino acid transport systems in Escherichia coli k-12. Journal of Biological Chemistry 243:5914–5920
    [Google Scholar]
  28. Rapin A. M. C., Kalckar H. M. 1971; The relation of bacteriophage attachment to lipopolysaccharide structure. In Microbiology. Toxins IV p. 293 Weinbaum G., Kadis S., Ajl S. Edited by New York: Academic Press.;
    [Google Scholar]
  29. Robbie J. P., Wilson T. H. 1969; Transmembrane effects of β-galactosides on thiomethyl-β-galactoside transport in Escherichia coli. Biochimica et biophysica acta 173:234–244
    [Google Scholar]
  30. Sanderson K. E. 1972; Linkage map of Salmonella typhimurium. Edition IV. Bacteriological Reviews 36:558–586
    [Google Scholar]
  31. Shapiro J. A. 1966; Chromosomal location of the gene determining uridine diphosphoglucose formation in Escherichia coli k-12. Journal of Bacteriology 92:518–520
    [Google Scholar]
  32. Signer E. R. 1966; Interaction of prophages at the att80 site with the chromosome of Escherichia coli. Journal of Molecular Biology 15:243–255
    [Google Scholar]
  33. Somerville R. L. 1966; Tryptophan operon of Escherichia coli: regulatory behavior in Salmonella typhimurium cytoplasm. Science; New York: 1541585–1587
    [Google Scholar]
  34. Taylor A. L., Trotter C. D. 1972; Linkage map of Escherichia coli strain k-12. Bacteriological Reviews 36:504–524
    [Google Scholar]
  35. Thorne G. M. 1972 Tryptophan transport in the Enterobactereaceae. Ph. D. thesis Boston University;
    [Google Scholar]
  36. Thorne G. M., Corwin L. M. 1970; Mapping of tryptophan permease gene in Escherichia coli and Salmonella typhimurium. Bacteriological Proceedings 70:21
    [Google Scholar]
  37. Thorne G. M., Corwin L. M. 1971; Regulation of tryptophan permease levels in Enterobacteriaceae. Federation Proceedings 30:1115
    [Google Scholar]
  38. Thorne G. M., Corwin L. M. 1972; Genetic locus of a gene affecting leucine transport in Salmonella typhimurium. Journal of Bacteriology 110:784–785
    [Google Scholar]
  39. Wang C. C., Newton A. 1969a; Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli. Journal of Bacteriology 98:1135–1141
    [Google Scholar]
  40. Wang C. C., Newton A. 1969b; Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine. Journal of Bacteriology 98:1142–1150
    [Google Scholar]
  41. Wang C. C., Newton A. 1971; An additional step in the transport of iron defined by the tonB locus of Escherichia coli. Journal of Biological Chemistry 246:2147–2151
    [Google Scholar]
  42. Wang R. J., Morse H. G., Morse M. L. 1969; Carbohydrate accumulation and metabolism in Escherichia coli: the close linkage and chromosomal location of ctr mutations. Journal of Bacteriology 98:605–610
    [Google Scholar]
  43. Wuesthoff G., Bauerle R. H. 1970; Mutations creating internal promoter elements in the tryptophan operon of Salmonella typhimurium. Journal of Molecular Biology 49:171–196
    [Google Scholar]
  44. Yanofsky C., Lennox E. S. 1959; Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in Escherichia coli. Virology 8:425–447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-90-2-203
Loading
/content/journal/micro/10.1099/00221287-90-2-203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error