1887

Abstract

Summary: Properties of a transducing system with a phage able to transduce a kanamycin resistance marker of the T compatibility group R factor R394 at high frequency are described. The phage was detected in strain 5006 transduced to kanamycin resistance by phage 34 grown on strain 13 carrying the R factor. The 5006 transductants, specially selected at the lowest multiplicities of infection (m.o.i.) of the high frequency transducing (h.f.t.) phage, are normal lysogens. They liberate h.f.t. phage spontaneously and high-titre phage may be obtained by u.v. induction. The phage is serologically identical to phage 34 and is defective in that, at low m.o.i., transduction frequency is increased by the simultaneous presence of homologous non-transducing phage. Ultraviolet irradiation of the h.f.t. lysate produces an exponential fall in transduction frequency. It is concluded that the defective phage transduces by lysogenization. Phage present in h.f.t. lysates can also transduce various chromosomal markers of 5006 at low frequencies. These low-frequency transductants are usually not kanamycin resistant. Transductants do not transfer the kanamycin resistance marker conjugally and produce kanamycin-sensitive normal lysogenic segregants at a high rate. Strain 5006 is cryptically lysogenic for a phage which is morphologically and serologically identical to phage 34 and many of the particular features of this transduction system are explicable in terms of complementation or recombination between genes of the phages involved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-84-2-285
1974-10-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/84/2/mic-84-2-285.html?itemId=/content/journal/micro/10.1099/00221287-84-2-285&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1956; Methods of study of bacterial viruses. Methods in Medical Research 2:1–73
    [Google Scholar]
  2. Arber W. 1958; Transduction des caract6res gal par le bacteriophage lambda. Archives scientiae (Geneva) K.259–338
    [Google Scholar]
  3. Arber W. 1960; Transduction of chromosomal genes and episomes in Escherichia coli . Virology 11273–288
    [Google Scholar]
  4. Arber W., Kellenberger G., Weigle J. 1957; La defectuosite du phage transducteur. Schweizerische Zeitschrift fiir allgemeine Pathologie and Bakteriologie 20:659–665
    [Google Scholar]
  5. Bertani L. E. 1970; Split-operon control of a prophage gene. Proceedings of the National Academy of Sciences of the United States of America 65:331–336
    [Google Scholar]
  6. Campbell A. 1957; Transduction and segregation in Escherichia coli K12. Virology 4:366–384
    [Google Scholar]
  7. Chan R. K., Botstein D., Watanabe T., Ogata Y. 1972; Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium . Virology 50:883–898
    [Google Scholar]
  8. Clowes R. C., Hayes W. 1968 Experiments in Microbial Genetics Oxford and Edinburgh: Blackwell Scientific Publications;
    [Google Scholar]
  9. Coetzee J. N. 1961; Lysogenic conversion in the genus Proteus . Nature, London 189:946–947
    [Google Scholar]
  10. Coetzee J. N. 1972; Genetics of the Proteus group. Annual Review of Microbiology 26:23–54
    [Google Scholar]
  11. Coetzee J. N. 1974; Properties of Proteus and Providence strains harbouring recombinant plasmids between P-lac and Kidrdig or R447b. Journal of General Microbiology 80:119–130
    [Google Scholar]
  12. Coetzee J. N., Datta N., Hedges R. W. 1972; R factors from Proteus rettgeri . Journal of General Microbiology 72:543–552
    [Google Scholar]
  13. Coetzee J. N., Datta N., Hedges R. W., Appelbaum P. C. 1973; Transduction of R factors in Proteus mirabilis and P. rettgeri . Journal of General Microbiology 76:355–368
    [Google Scholar]
  14. Coetzee J. N., Sacks T. G. 1960; Transduction of streptomycin resistance in Proteus mirabilis . Journal of General Microbiology 23:445–455
    [Google Scholar]
  15. Coetzee J. N., Smit J. A. 1970; Properties of Proteus mirabilis phage I3v/r. Journal of General Virology 9:247–249
    [Google Scholar]
  16. Coetzee J. N., Smit J. A., Prozesky O. W. 1966; Properties of Providence and Proteus morganii transducing phages. Journal of General Microbiology 44:167–176
    [Google Scholar]
  17. Dubnau E., Stocker B. A. D. 1964; Genetics of plasmids in Salmonella typhimurium . Nature, London 204:1112–1113
    [Google Scholar]
  18. Falkow S., Wohlhieter J. A., Citarella R. V., Baron L. S. 1964; Transfer of episomic elements to Proteus . Journal of Bacteriology 88:1598–1601
    [Google Scholar]
  19. Grabow W. O. K. 1972; Growth-inhibiting metabolites of Proteus mirabilis . Journal of Medical Microbiology 5:191–196
    [Google Scholar]
  20. Gratia J. P. 1973; Coliphage ϕy, a novel type of specialized transducer. Molecular and General Genetics 124:157–166
    [Google Scholar]
  21. Jessop A. P. 1972; A specialized transducing phage of P22 for which the ability to form plaques is associated with transduction of the proAB region. Molecular and General Genetics 114:214–222
    [Google Scholar]
  22. Kameda M., Harada K., Suzuki M., Mitsuhashi S. 1965; Drug resistance of enteric bacteria. V. High frequency of transduction of R factors with bacteriophage epsilon. Journal of Bacteriology 90:1174–1181
    [Google Scholar]
  23. Kondo E., Mitsuhashi S. 1964; Drug resistance of enteric bacteria. IV. Active transducing bacteriophage Pi CM produced by the combination of R factor with bacteriophage Pi. Journal of Bacteriology 88:1266–1276
    [Google Scholar]
  24. Krizsanovich K. 1973; Cryptic lysogeny in Proteus mirabilis . Journal of General Virology 19:311–320
    [Google Scholar]
  25. Luria S. E., Adams J. N., Ting R. C. 1960; Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology 12:348–390
    [Google Scholar]
  26. Matsushiro A. 1963; Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage 08o. Virology 19:475–482
    [Google Scholar]
  27. Morse M. L., Lederberg E. M., Lederberg J. 1956; Transductional heterogenotes in Escherichia coli . Genetics 41:758–779
    [Google Scholar]
  28. Ozeki H., Ikeda H. 1968; Transduction mechanisms. Annual Review of Genetics 2:245–278
    [Google Scholar]
  29. Schmieger H. 1970; The molecular structure of the transducing particles of Salmonella phage P22. II Density gradient analysis of DNA. Molecular and General Genetics 109:323–337
    [Google Scholar]
  30. Smith-Keary P. F. 1966; Restricted transduction by bacteriophage P22 in Salmonella typhimurium . Genetical Research 8:73–82
    [Google Scholar]
  31. Van Rensburg A. J. 1970 Studies on Proteus and Providence spheroplasts, L-forms and bacteriophage nucleic acids M.D. thesis University of Pretoria;
    [Google Scholar]
  32. Watanabe T., Fukasawa T. 1961; Episome-mediated transfer of drug resistance in Enterobacteriaceae. III Transduction of resistance factors. Journal of Bacteriology 82:202–209
    [Google Scholar]
  33. Watanabe T., Ogata Y., Chan R. K., Botstein D. 1972; Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology 50:874–882
    [Google Scholar]
  34. Williams Smith H. 1972; Ampicillin resistance in Escherichia coli by phage infection. Nature, London 238:205–206
    [Google Scholar]
  35. Wing J. P. 1968; Transduction by phage P22 in a recombination-deficient mutant of Salmonella typhimurium . Virology 36:271–276
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-84-2-285
Loading
/content/journal/micro/10.1099/00221287-84-2-285
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error