1887

Abstract

SUMMARY: NCYC 366 was grown anaerobically under conditions that induce a requirement for a sterol and an unsaturated fatty acid. In media containing ergosterol and either oleic acid, linoleic or -linolenic acid, organisms grew at about the same rate, although the duration of the lag phase of growth was extended as the degree of unsaturation in the exogenous fatty acid was increased. Organisms grown in each of the three media did not differ in their contents of total lipids or total phospholipids. Between 54 and 65% of the fatty-acid residues in lipids extracted from organisms were the same as the fatty acid supplied in the medium. Organisms grown in linoleic acid-containing medium were less susceptible to sphaeroplast formation, by digestion of the wall with a basidiomycete glucanase, than were organisms grown in the presence of oleic acid. Sphaeroplasts could be obtained from organisms grown in the presence of linolenic acid if spermine was included in the glucanase digest. Sphaeroplasts formed in the presence of spermine from organisms grown in oleic acid-containing medium were less susceptible to osmotic lysis than sphaeroplasts formed from these organisms in the absence of spermine. The effect of spermine was less pronounced with organisms grown in media containing linoleic acid. The inclusion of spermine in the hypotonic solutions of sorbitol did not affect the kinetics of lysis of sphaeroplasts from organisms grown in medium containing oleic acid or linoleic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-77-2-371
1973-08-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/2/mic-77-2-371.html?itemId=/content/journal/micro/10.1099/00221287-77-2-371&mimeType=html&fmt=ahah

References

  1. Andreasen A. A., Stier T. J. B. 1954; Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 43:271–281
    [Google Scholar]
  2. Bachrach U. 1970; Metabolism and function of spermine and related polyamines. Annual Review of Microbiology 24:109–134
    [Google Scholar]
  3. Bastide J-M, Bastide M., Bonte M., Travé P., Torralba Pr. A. 1972; Étude de la culture du basidiomycete QM 806 en fermejnteur: Production d’une exo-β-(1-3)-D-glucanase. Traveaux de la Société de Pharmacie de Montpellier 32:93–106
    [Google Scholar]
  4. Carrol K. K. 1961; Quantitative estimation of peak areas in gas-liquid chromatography. Nature, London 191:377–381
    [Google Scholar]
  5. Chen P. S., Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Analytical Chemistry 28:1756–1758
    [Google Scholar]
  6. Corner T. R., Marquis R. E. 1969; Why do bacterial protoplasts burst in hypotonic solution?. Biochimica et biophysica acta 183:544–558
    [Google Scholar]
  7. Demel R. A., van Deenen L. L. M., Pethica B. A. 1967; Monolayer interaction of phospholipids and cholesterol. Biochimica et biophysica acta 135:11–19
    [Google Scholar]
  8. Demel R. A., Bruckdorfer K. R., van Deenen L. L. M. 1972; Structural requirements of sterols for the interaction with lecithin at the air-water interface. Biochimica et biophysica acta 255:311–320
    [Google Scholar]
  9. Demel R. A., , Geurts van Kessel W. S. M., van Deenen L. L. M. 1972; The properties of poly-unsaturated lecithin in monolayers and liposomes and the interactions of these lecithins with cholesterol. Biochimica et biophysica acta 255:26–40
    [Google Scholar]
  10. Diamond R. J., Rose A. H. 1970; Osmotic properties of sphaeroplasts from Saccharomyces cerevisiae grown at different temperatures. Journal of Bacteriology 102:311–319
    [Google Scholar]
  11. Eddy A. A., Rudin A. D. 1958; The structure of the yeast cell wall. II. Degradative studies with enzymes. Proceedings of the Royal Society B 149:419–432
    [Google Scholar]
  12. Eletr S., Keith A. D. 1972; Spin-label studies of dynamics of lipid alkyl chains in biological membranes; role of unsaturated sites. Proceedings of the National Academy of Sciences of the United States of America 69:1353–1357
    [Google Scholar]
  13. Harold F. M. 1964; Stabilisation of Streptococcus faecalis protoplasts by spermine. Journal of Bacteriology 88:1416–1420
    [Google Scholar]
  14. Henry S. A., Keith A. D. 1971; Membrane properties of saturated fatty acid mutants of yeast revealed by spin labels. Chemistry and Physics of Lipids 7:245–265
    [Google Scholar]
  15. Higashi Y., Strominger J. L. 1970; Biosynthesis of the peptidoglycan of bacterial cell walls. XX. Identification of phosphatidylglycerol and cardiolipin as cofactors for isoprenoid alcohol phospho-kinase. Journal of Biological Chemistry 245:3691–3696
    [Google Scholar]
  16. Higashi Y., Strominger J. L., Sweeley C. C. 1970; Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus. Journal of Biological Chemistry 245:3697–3702
    [Google Scholar]
  17. Hossack J. A., Wheeler G. E., Rose A. H. 1973; Environmentally induced changes in the lipid composition of cells and membranes of Pseudomonas aeruginosa. Proceedings of the 3rd International Symposium on Yeast Protoplasts (in the press)
    [Google Scholar]
  18. Hunter K., Rose A. H. 1972; Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochimica et biophysica acta 260:639–563
    [Google Scholar]
  19. Huotari F. I., Nelson T. E., Smith F., Kirkwood S. 1958; Purification of an exo-B-(1-3) glucanase from basidiomycete species QM 806. Journal of Biological Chemistry 243:952–956
    [Google Scholar]
  20. Light R. J., Lennarz W. J., Bloch K. 1962; The metabolism of hydroxystearic acids in yeast. Journal of Biological Chemistry 237:1793–1800
    [Google Scholar]
  21. McElhaney R. N., Tourtellotte M. E. 1969; Mycoplasma membrane lipids: Variations in fatty acid composition. Science, New York 164:433–434
    [Google Scholar]
  22. Mager J. 1959; The stabilising effect of spermine and related polyamines on bacterial protoplasts. Biochimica et biophysica acta 36:529–531
    [Google Scholar]
  23. Patching J. W., Rose A. H. 1969; The effects and control of temperature. In Methods in Microbiology vol 2 pp 23–28 Edited by Norris J. R., Ribbons D. W. London: Academic Press;
    [Google Scholar]
  24. Phaff H. J. 1971; Structure and biosynthesis of the yeast cell envelope. In The Yeasts vol 2 pp 135–210 Edited by Rose A. H., Harrison J. S. London: Academic Press;
    [Google Scholar]
  25. Pisetsky D., Terry T. M. 1972; Are mycoplasma membrane proteins affected by variations in membrane fatty acid composition?. Biochimica et biophysica acta 274:95–104
    [Google Scholar]
  26. Proudlock J. W., Wheeldon L. W., Jollow D. J., Linnane A. W. 1968; Role of sterols in Pseudomonas aeruginosa. Biochimica et biophysica acta 152:434–437
    [Google Scholar]
  27. Razin S. 1973; Physiology of mycoplasmas. Advances in Microbial Physiology 10:1–80
    [Google Scholar]
  28. Razin S., Cosenza B. J., Tourtellotte M. E. 1966; Variations in mycoplasma morphology induced by long-chain fatty acids. Journal of General Microbiology 42:139–145
    [Google Scholar]
  29. Razin S., Tourtellotte M. E., McElhaney R. N., Pollack J. D. 1966; Influence of lipid components of Mycoplasma membranes on osmotic fragility of cells. Journal of Bacteriology 91:609–616
    [Google Scholar]
  30. Reese E. T., Mandels M. 1959; β (1-3) Glucanases in fungi. Canadian Journal of Microbiology 5. 173–185
  31. Resnick M. A., Mortimer R. K. 1966; Unsaturated fatty acid mutants of Pseudomonas aeruginosa. Journal of Bacteriology 92:597–600
    [Google Scholar]
  32. Schweizer E., Bolling H. 1970; A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 67:660–666
    [Google Scholar]
  33. Schweizer E., Kühn L., Castorph H. 1971; A new gene cluster in yeast: The fatty acid synthetase system. Hoppe-Seyler’s Zeitschrift fur physiologische Chemie 352:377–384
    [Google Scholar]
  34. Sentandreu R., Lampen J. O. 1971; Participation of a lipid intermediate in the biosynthesis of Saccharomyces cerevisiae LK2G12 mannan. Federation of European Biochemical Societies Letters 14:109–113
    [Google Scholar]
  35. Silbert D. F., Ruch F., Vagelos P. R. 1968; Fatty acid replacements in a fatty acid auxotroph of Escherichia coli. Journal of Bacteriology 95. 1658–1665
  36. Stoffel W., Chu F., Ahrens E. H. 1959; Analysis of long chain fatty acids by gas-liquid chromatography. Micromethod for preparation of methyl esters. Analytical Chemistry 31:1101–1111
    [Google Scholar]
  37. Tabor C. W. 1962; Stabilization of protoplasts and sphaeroplasts by spermine. Journal of Bacteriology 83:1101–1111
    [Google Scholar]
  38. Wheeler G. E., Rose A. H. 1973; Location and properties of an esterase activity in Pseudomonas aeruginosa. Journal of General Microbiology 74:189–192
    [Google Scholar]
  39. Wisnieski B. J., Kiyomoto R. Y. 1972; Fatty acid desaturase mutants of yeast: growth requirements and electron spin resonance spin-label distribution. Journal of Bacteriology 109:186–195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-77-2-371
Loading
/content/journal/micro/10.1099/00221287-77-2-371
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error