1887

Abstract

SUMMARY: About one-third of the C isoprenoid alcohol, bactoprenol, in and cells was in the mesosomes and two-thirds in the plasma membrane. After removal of bound lysozyme from the plasma membrane, the concentration of bactoprenol per mg protein was the same in the mesosomes and in the plasma membrane. Pulse-labelling experiments and chasing with unlabelled precursor showed that bactoprenol is synthesized in both the plasma and mesosome membranes and that mesosomal bactoprenol is not a precursor of plasma membrane bactoprenol. These findings are discussed in relation to the involvement of bactoprenol in cell-wall synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-70-1-87
1972-04-01
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/mic-70-1-87.html?itemId=/content/journal/micro/10.1099/00221287-70-1-87&mimeType=html&fmt=ahah

References

  1. Abrams A. 1965; The release of bound ATPase from isolated bacterial membranes and the properties of the solubilized enzyme. Journal of Biological Chemistry 240:3675–3681
    [Google Scholar]
  2. Barker D. C., Thorne K. J. I. 1970; Spheroplasts of Lactobacillus casei and the cellular distribution of bactoprenol. Journal of Cell Science 7:755–785
    [Google Scholar]
  3. Briles E. B., Tomasz A. 1970; Radioautographic evidence for equatorial wall growth in a Grampositive bacterium. Journal of Cell Biology 47:786–790
    [Google Scholar]
  4. Burdett I. D. J., Rogers H. J. 1970; Modification of the appearance of mesosomes in sections of Bacillus licheniformis according to the fixation procedures. Journal of Ultrastructure Research 30:354–367
    [Google Scholar]
  5. Chapman G. B., Hillier J. 1953; Electron microscopy of ultra-thin sections of bacteria. I. Cellular division in Bacillus cereus. Journal of Bacteriology 66:362–373
    [Google Scholar]
  6. Cole R. M., Hahn J. J. 1962; Cell-wall replication in Streptococcus pyogenes. Science; New York: 135722–724
    [Google Scholar]
  7. Daniels M. J. 1971; Some features of the bacterial membrane studied with the aid of new fractionation technique. Biochemical Journal 122:197–207
    [Google Scholar]
  8. Dietrich C. P., Colucci A. V., Strominger J. L. 1967; Biosynthesis of the peptidoglycan of bacteria cell walls. V. Separation of protein and lipid components of the particulate enzyme from Micrococcus lysodeikticus and purification of the endogenous lipid acceptors. Journal of Biological Chemistry 242:3218–3225
    [Google Scholar]
  9. Ellar D. J., Lundgren D. G., Slepecky R. A. 1967; Fine structure of Bacillus megaterium during synchronous growth. Journal of Bacteriology 94:1189–1205
    [Google Scholar]
  10. Ellar D. J., Thomas T. D., Postgate J. A. 1971; Properties of mesosomal membranes isolated from Micrococcus lysodeikticus and Bacillus megaterium. Biochemical Journal 122:44p–45p
    [Google Scholar]
  11. Fiske C. H., Subbarow Y. 1925; The colorimetric determination of phosphorus. Journal of Biological Chemistry 66:375–400
    [Google Scholar]
  12. Fitz-James P. C. 1968; A functional and structural comparison of separated fractions of mesosomes and plasma membrane of bacteria. Protides of the Biological Fluids 15:289–301
    [Google Scholar]
  13. Gibbons M. N. 1955; The determination of methylpentoses. Analyst 80:268–276
    [Google Scholar]
  14. Giesbrecht P., Ruska H. 1968; Über Veränderungen der Feinstrukturen von Bakterien unter der Einwirkung von Chloramphenicol. Klinische Wochenschrift 46:575–582
    [Google Scholar]
  15. Higashi Y., Strominger J. L., Sweeley C. C. 1967; Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proceedings of the National Academy of Sciences of the United States of America 57:1878–1884
    [Google Scholar]
  16. Higgins M. L., Shockman G. D. 1970a; Model for cell wall growth of Streptococcus faecalis. Journal of Bacteriology 101:643–648
    [Google Scholar]
  17. Higgins M. L., Shockman G. D. 1970b; Early changes in the ultrastructure of Streptococcus faecalis after amino acid starvation. Journal of Bacteriology 103:244–254
    [Google Scholar]
  18. Hughes A. H., Stow M., Hancock I., Baddiley J. 1971; Function of teichoic acids and effect of novobiocin on control of Mg2+ at the bacterial membrane. Nature New Biology 229:53–55
    [Google Scholar]
  19. Hughes R. C., Stokes E. 1971; Cell wall growth in Bacillus licheniformis followed by immunofluorescence with mucopeptide-specific antiserum. Journal of Bacteriology 106:694–696
    [Google Scholar]
  20. Van Iterson W., Op Den Kamp J. A. F. 1969; Bacteria shaped gymnoplasts (protoplasts) of Bacillus subtilis. Journal of Bacteriology 99:304–315
    [Google Scholar]
  21. James A. M., Brewer J. E. 1968; A protein component of the cell surface of Staphylococcus aureus. Biochemical Journal 108:257–262
    [Google Scholar]
  22. Kakefuda T., Holden J. T., Utech N. M. 1967; Ultrastructure of the membrane system in Lactobacillus plantarum. Journal of Bacteriology 93:472–483
    [Google Scholar]
  23. Kellenberger E., Ryter A., Séchaud J. 1958; Electron microscope study of DNA containing plasma. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. Journal of Biophysical and Biochemical Cytology 4:671–676
    [Google Scholar]
  24. Loewus F. A. 1952; Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry 24:219
    [Google Scholar]
  25. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  26. Millonig G. 1961; A modified procedure for lead staining of thin sections. Journal of Biophysical and Biochemical Cytology 11:736–737
    [Google Scholar]
  27. Munoz E., Freer J. H., Ellar D. J., Salton M. R. J. 1968; Membrane-associated ATPase activity from Micrococcus lysodeikticus. Biochimica et biophysica acta 150:531–533
    [Google Scholar]
  28. Nanninga N. 1968; Structural features of mesosomes (chondroids) of Bacillus subtilis after freeze-etching. Journal of Cell Biology 39:251–263
    [Google Scholar]
  29. Nermut M. V., Murray R. G. E. 1967; Ultrastructure of the cell wall of Bacillus polymyxa. Journal of Bacteriology 93:1949–1965
    [Google Scholar]
  30. Reaveley D. A., Rogers H. J. 1969; Some enzymic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis 6346. Biochemical Journal 113:67–79
    [Google Scholar]
  31. Rogers H. J. 1970; Bacterial growth and the cell envelope. Bacteriological Reviews 34:194–214
    [Google Scholar]
  32. Scher M., Lennarz W. J., Sweeley C. C. 1968; The biosynthesis of mannosyl-1-phosphoryl-polyiso-prenol in Micrococcus lysodeikticus and its role in mannan synthesis. Proceedings of the National Academy of Sciences of the United States of America 59:1313–1320
    [Google Scholar]
  33. Thorne K. J. I., Barker D. C. 1969; Bactoprenol, ATPase and acetate activating enzymes of a vesicular fraction from Lactobacillus casei. European Journal of Biochemistry 11:582–591
    [Google Scholar]
  34. Thorne K. J. I., Barker D. C. 1971; The bactoprenol content of plasma and mesosome membranes from Lactobacillus casei. Biochemical Journal 122:45p–46p
    [Google Scholar]
  35. Thorne K. J. I., Kodicek E. 1962a; The metabolism of acetate and mevalonic acid by lactobacilli. I. The effect of acetate and mevalonic acid on growth. Biochimica et biophysica acta 59:273–279
    [Google Scholar]
  36. Thorne K. J. I., Kodicek E. 1962b; The metabolism of acetate and mevalonic acid by lactobacilli. II. The incorporation of 14C acetate and 14C mevalonic acid into the bacterial lipids. Biochimica et biophysica acta 59:280–294
    [Google Scholar]
  37. Thorne K. J. I., Kodicek E. 1966; The structure of bactoprenol, a lipid formed by lactobacilli from mevalonic acid. Biochemical Journal 99:123–127
    [Google Scholar]
  38. Troy F. A., Frerman F. E., Heath E. C. 1971; The biosynthesis of capsular polysaccharide in Aero-bacter aerogenes. Journal of Biological Chemistry 246:118–133
    [Google Scholar]
  39. Watkinson R. J., Hussey H., Baddiley J. 1971; Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan. Nature New Biology 229:57–59
    [Google Scholar]
  40. Weber K., Osborn M. 1969; The reliability of molecular weight determinations by dodecyl-sulphate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244:4406–4412
    [Google Scholar]
  41. Wilkinson S. G. 1967; The sensitivity of pseudomonads to EDTA. Journal of General Microbiology 47:67–76
    [Google Scholar]
  42. Wright A., Dankert M., Fennessey P., Robbins P. W. 1967; Characterisation of a polyisoprenoid compound functional in O-antigen biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 57:1798–1803
    [Google Scholar]
  43. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. 1969; Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30:148–152
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-70-1-87
Loading
/content/journal/micro/10.1099/00221287-70-1-87
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error