1887

Abstract

SUMMARY

Seventy-three cysteine (cys) auxtrophs of strain 13 were arranged in six transductional groups. Members of these groups had nutritional requirements similar to and mutants. The chromosomal topography of the mutants resembles that of and mutants in that they are not arranged in an operonand mutants are co-transducible with tryptophan markers. The auxotrophs may be equivalent to and mutants which have similar nutritional requirements. In is closely linked to and the cluster may also be present in this organism. The mutants, which are co-transducible with an arginine gene cluster, seem to lack acetylserine sulphhydrylase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-70-1-77
1972-04-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/mic-70-1-77.html?itemId=/content/journal/micro/10.1099/00221287-70-1-77&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages New York: Interscience Publishers;
    [Google Scholar]
  2. Becker M. A., Tomkins G. M. 1969; Pleiotrophy in a cysteine-requiring mutant of Salmonella typhimurium resulting from altered protein-protein interaction. Journal of Biological Chemistry 244:6023–6030
    [Google Scholar]
  3. Böhme H. 1964; Über den Einfluss von Mutationen im Genom des Donor-Stammes auf dieTransduktions-fahigkeit des Proteus-Phagen π 1. In Struktur und Funktion des genetischen Materials pp 107–111 Berlin: Akademie Verlag;
    [Google Scholar]
  4. Calhoun D. H., Feary T. W. 1969; Transductional analysis of Pseudomonas aeruginosa methionineless auxotrophs. Journal of Bacteriology 97:210–216
    [Google Scholar]
  5. Clowes R. C. 1958a; Nutritional studies of cysteineless mutants of Salmonella typhimurium. Journal of General Microbiology 18:140–153
    [Google Scholar]
  6. Clowes R. C. 1958b; Investigation of the genetics of cysteineless mutants of Salmonella typhimurium by transduction. Journal of General Microbiology 18:154–172
    [Google Scholar]
  7. Coetzee J. N., Prozesky O. W. 1969; Arginine gene clusters of Proteus hauseri, P. morganii and Providence organisms. Proceedings of the South African Society of Pathologists pp 77–79
    [Google Scholar]
  8. Coetzee J.N, Snacks T. G. 1960a; Intrastrain transduction in Proteus mirabilis. Nature; London: 185869–870
    [Google Scholar]
  9. Coetzee J. N., Sacks T. G. 1960b; Transduction of streptomycin resistance in Proteus mirabilis. Journal of General Microbiology 23:445–455
    [Google Scholar]
  10. Coetzee J. N., Smit J. A. 1970; Properties of Proteus mirabilis phage 13 vir. Journal of General Virology 9:247–249
    [Google Scholar]
  11. Coetzee J. N., Smit J. A., Prozesky O. W. 1966; Properties of Providence and Proteus morganiitransducing phages. Journal of General Microbiology 44:167–176
    [Google Scholar]
  12. Demerec M., Hartman Z. 1956; Tryptophan mutants in Salmonella typhimurium. In Genetic Studies with Bacteria pp 5–33 Washington: Publications of the Carnegie Institution 612;
    [Google Scholar]
  13. Demerec M., Moser H., Clowes R. C., Lahr E. L., Ozeki J., Vielmetter W. 1956; . In Bacterial Genetics pp 301–315 Washington: Year Book of the Carnegie Institution 55;
    [Google Scholar]
  14. Dreyfuss J., Monty K. J. 1963; The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium. Journal of Biological Chemistry 238:1019–1024
    [Google Scholar]
  15. Dubnau D., Goldthwaite C., Smith I., Marmur J. 1967; Genetic mapping in Bacillus subtilis. Journal of Molecular Biology 27:163–185
    [Google Scholar]
  16. Enomoto M. 1967; Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology 33:474–482
    [Google Scholar]
  17. Flavin M., Slaughter C. 1965; Synthesis of the succinic ester of homoserine, a new intermediate in the bacterial biosynthesis of methionine. Biochemistry 4:1370–1375
    [Google Scholar]
  18. Gillespie D., Demerec M., Itikawa H. 1968; Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring strains. Genetics 59:433–442
    [Google Scholar]
  19. Grabow W. O. K. 1972; Transductional analysis of methionine genes in Proteus mirabilis. Heredity in the press
    [Google Scholar]
  20. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis. Journal of General Microbiology 46:47–57
    [Google Scholar]
  21. Hartman P. E., Loper J. C., Šerman D. 1960; Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. Journal of General Microbiology 22:323–353
    [Google Scholar]
  22. Henderson R. J., Loughlin R.E. 1968; Complementation in vitro between cysteine auxotrophs of Salmonella typhimurium. Biochimica et biophysica acta 156:195–197
    [Google Scholar]
  23. Hopwood D. A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriological Reviews 31:373–403
    [Google Scholar]
  24. Horowitz N. H. 1947; Methionine synthesis in Neurospora. The isolation of cystathionine. Journal of Biological Chemistry 171:255–264
    [Google Scholar]
  25. Itikawa H., Demerec M. 1967; Ditto deletions in the cysC region of the Salmonella chromosome. Genetics 55:63–68
    [Google Scholar]
  26. Jones D., Sneath P. H. A. 1970; Genetic transfer and bacterial taxonomy. Bacteriological Reviews 34:40–81
    [Google Scholar]
  27. Jones-Mortimer M. C. 1968; Positive control of sulphate reduction inEscherichiacoli. Isolation, characterization and mapping of cysteineless mutants of E. coli KI2. Biochemical Journal no:589–595
    [Google Scholar]
  28. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A. 1968; The control of sulphate reduction in Escherichia coli by O-acetyl-l-serine. Biochemical Journal 107:51–53
    [Google Scholar]
  29. Kredich N. M., Becker M. A., Tomkins G. M. 1969; Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. Journal of Biological Chemistry 244:2428–2439
    [Google Scholar]
  30. Kredich N. M., Tomkins G. M. 1966; The enzymatic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. Journal of Biological Chemistry 241:4955–4965
    [Google Scholar]
  31. Krizsanovich K., Deklerk H. C., Smit J. A. 1969; A transducing bacteriophage for Proteus rettgeri. Journal of General Virology 4:437–439
    [Google Scholar]
  32. Lampen J. O., Jones M. J., Perkins A. B. 1947; Studies on the sulfur metabolism of Escherichia coli. I. The growth characteristics and metabolism of a mutant strain requiring methionine. Archives of Biochemistry 13:33–45
    [Google Scholar]
  33. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. Journal of Bacteriology 63:399–406
    [Google Scholar]
  34. Leinweber F. J., Monty K. J. 1961; The mode of utilization of cysteine sulfinic acid by bacteria. Biochemical and Biophysical Research Communications 6:355–358
    [Google Scholar]
  35. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage Pi. Virology 1:190–206
    [Google Scholar]
  36. Mise K., Suzuki K. 1970; New generalized transducing bacteriophage in Escherichia coli. Journal of Virology 6:253–255
    [Google Scholar]
  37. Mizobuchi K., Demerec M., Gillespie D. H. 1962; Cysteine mutants of Salmonella typhimurium. Genetics 47:1617–1627
    [Google Scholar]
  38. Postgate J. R. 1963; The examination of sulphur auxotrophs: a warning. Journal of General Microbiology 30:481–484
    [Google Scholar]
  39. Prozesky O. W. 1967; Arginine synthesis in Proteus mirabilis. Journal of General Microbiology 49:325–334
    [Google Scholar]
  40. Prozesky O. W. 1968; Transductional analysis of arginineless mutants in Proteus mirabilis. Journal of General Microbiology 54:127–143
    [Google Scholar]
  41. Prozesky O. W., Coetzee J. N. 1966; Linked transduction in Proteus mirabilis. Nature; London: 2091262
    [Google Scholar]
  42. Prozesky O. W., Deklerk H. C., Coetzee J. N. 1965; The morphology of Proteus bacteriophages. Journal of General Microbiology 41:29–36
    [Google Scholar]
  43. Sanderson K. E. 1970; Current linkage map of Salmonella typhimurium. Bacteriological Reviews 34:176–193
    [Google Scholar]
  44. Siegel L. M., Click E. M., Monty K. J. 1964; Evidence for a two-step electron flow from TPNH to sulfite and hydroxylamine in extracts of Salmonella typhimurium. Biochemical and Biophysical Research Communications 17:125–129
    [Google Scholar]
  45. Simmonds S. 1948; Utilization of sulfur-containing amino acids by mutant strains of Escherichia coli. Journal of Biological Chemistry 174:717–722
    [Google Scholar]
  46. Spencer H. T., Collins J., Monty K. J. 1967; Sequential regulation of cysteine biosynthesis in Salmonella typhimurium. Federation Proceedings of the Federation of American Societies for Experimental Biology 27:677
    [Google Scholar]
  47. Taylor A. L. 1970; Current linkage map of Escherichia coli. Bacteriological Reviews 34:155–175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-70-1-77
Loading
/content/journal/micro/10.1099/00221287-70-1-77
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error