1887

Abstract

SUMMARY: The thermal stability of interspecies DNA duplexes is markedly increased by raising the incubation temperature. When the DNA reassociation reactions are carried out at 75° in 0·12 -phosphate buffer the thermal denaturation temperature of the reassociated product is almost identical to that of the native DNA, indicating that only DNA segments of very similar nucleotide sequence are associating. The genus very clearly forms three groups based on the relatedness of their DNA to that of ; the ‘pathogenic’ Neisseria which have at least 80 % of their nucleotide sequences similar; the ‘non-pathogenic’ Neisseria which share only 8 to 15 %; and which shows no relatedness.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-55-2-201
1969-02-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/55/2/mic-55-2-201.html?itemId=/content/journal/micro/10.1099/00221287-55-2-201&mimeType=html&fmt=ahah

References

  1. Brenner D. J., Cowie D. B. 1967; Qualitativea spects of microbial DNA duplexes. Yb. Carnegie Instn Wash 66:106
    [Google Scholar]
  2. Brenner D. J., Cowie D. B. 1968; Thermal stability of Escherichia coli-Salmonella typhimurium deoxyribonucleic acid duplexes. J. Bact 95:2258
    [Google Scholar]
  3. Brenner D. J., Martin M. A., Hoyer B. H. 1957; Deoxyribonucleic acid homologies among some bacteria. J. Bact 94:486
    [Google Scholar]
  4. Britten R. J., Kohne D. E. 1966; Nucleotide sequence repetition in DNA. Yb. Carnegie Instn Wash 65:78
    [Google Scholar]
  5. Catlin B. W., Cunningham L. S. 1961; Transforming activities and base contents of deoxy- ribonucleate preparations from various Neisseriae. J. gen. Microbiol 26:303
    [Google Scholar]
  6. Heberlein G. T., De Ley J., Tujtgat R. 1967; Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium and Chromobacterium. . J. Bact 94:116
    [Google Scholar]
  7. Henriksen S. D., Bøvre K. 1968; The taxonomy of the genera Moraxella and Neisseria. . J.gen. Microbiol 51:387
    [Google Scholar]
  8. Hoyer B. H., Mccullough N. B. 1968; Polynucleotide homologies of Brucella deoxyribonucleic acids. J. Bact 95:444
    [Google Scholar]
  9. Johnson J. L., Ordal E. J. 1968; Deoxyribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J. Bact 95:893
    [Google Scholar]
  10. Kingsbury D. T. 1966; Bacteriocin production by strains of Neisseria meningitidis . J. Bact 91:1696
    [Google Scholar]
  11. Kingsbury D. T. 1967; Deoxyribonucleic acid homologies among species of the genus Neisseria . J. Bact 94:870
    [Google Scholar]
  12. Kingsbury D. T., Duncan J. F. 1967; Use of exogenous adenine to label the nucleic acids of wild-type Neisseria meningitidis. . J. Bact 94:1262
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. molec. Biol 5:109
    [Google Scholar]
  14. Martin M. A., Hoyer B. H. 1966; Thermal stabilities and species specificities of reannealed animal deoxyribonucleic acids. Biochemistry 5:2706
    [Google Scholar]
  15. Mccarthy B. J., Bolton E. T. 1963; An approach to the measurement of genetic relatedness among organisms. Proc. natn. Acad. Sci. U.S.A 50:156
    [Google Scholar]
  16. Miyazawa Y., Thomas C. A. 1965; Composition of short segments of DNA molecules. J. molec. Biol 11:223
    [Google Scholar]
  17. Slaterus K. W. 1961; A serological typing of meningococci by means of micro-precipitation. Antonie van Leeuwenhoek 21:305
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-55-2-201
Loading
/content/journal/micro/10.1099/00221287-55-2-201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error