1887

Abstract

SUMMARY

Swarming long forms of Proteus arose from short forms at the edge of a colony on nutrient agar. Specialized small pre-swarmer forms were not seen. The long forms contained many nuclear units and did not have cross walls while actively swarming. Long forms were not found in liquid media. Chemical analysis of short and long forms showed that cell walls of the two forms had qualitatively the same amino acid composition and that inhibition of DNA synthesis was not responsible for the formation of long forms. Long forms differed from short forms in having no detectable amino acid pool, a characteristic that may be associated with excessive flagellar synthesis by developing long forms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-47-3-359
1967-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/47/3/mic-47-3-359.html?itemId=/content/journal/micro/10.1099/00221287-47-3-359&mimeType=html&fmt=ahah

References

  1. Barbesgaard P. O., Wagner S. 1959; Further studies on the biochemical basis of protoperi-thecia formation in Neurospora crassa. Hereditas 45:564
    [Google Scholar]
  2. Bartnicki-Garcia S., Nickerson W. J. 1962; Isolation, composition and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim. biophys. Acta 58:102
    [Google Scholar]
  3. Berrah G., Konetzka W. A. 1962; Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J. Bact 83:738
    [Google Scholar]
  4. Berridge N. J., Cheeseman G. C., Mattick A. T. R., Bottazzi V. 1957; The differentiation of bacterial species by paper chromatography. II. Lactobacilli and Streptococci; the effect of age of culture J. appl. Bact 20:195
    [Google Scholar]
  5. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  6. Ceriotti G. 1955; Determination of nucleic acids in animal tissues. J. biol. Chem 214:59
    [Google Scholar]
  7. Chance H. L. 1953; A bacterial cell wall stain. Stain Technol 28:205
    [Google Scholar]
  8. Duguid J. P. 1946; The sensitivity of bacteria to the action of pencillin. Edinb. med. J 53:401
    [Google Scholar]
  9. Dworkin M. 1963; Nutritional regulation of morphogenesis in Myxococcus xanthus. J. Bact 86:67
    [Google Scholar]
  10. Goss W. A., Deitz W. H., Cook T. M. 1964; Mechanism of action of nalidixic acid on Escherichia coli. J. Bact 88:1112
    [Google Scholar]
  11. Gregory M., Mabbitt L. A. 1957; The differentiation of bacterial species by paper chroma-tography. IV. An examination of the micrococci, with special reference to the influence on the chromatograms of medium and age of culture J. appl. Bact 20:218
    [Google Scholar]
  12. Hauser G. 1885 Vber Faulnissbacterien undderen Beziehungen zur Septicamie Leipzig: F. G. W. Vogel;
    [Google Scholar]
  13. Hoeniger J. F. M. 1964; Cellular changes accompanying the swarming of Proteus mirabilis. I. Observations of living cultures Can. J. Microbiol 10:1
    [Google Scholar]
  14. Hoeniger J. F. M. 1965; Development of fiagella by Proteus mirabilis. J. gen. Microbiol 40:29
    [Google Scholar]
  15. Hoeniger J. F. M. 1966; Cellular changes accompanying the swarming of Proteus mirabilis. II. Observations of stained organisms Can. J. Microbiol 12:113
    [Google Scholar]
  16. Holden J. T. 1962; The composition of microbial amino acid pools. In Amino Acid Pools Ed. by Holden J. T. p 73 New York: Elsevier;
    [Google Scholar]
  17. Hughes W. H. 1957; A reconsideration of the swarming of Proteus vulgaris. J. gen. Microbiol 17:49
    [Google Scholar]
  18. Jones H. E. 1966 The Swarming Phenomenon of the Bacterial Genus Proteus Ph.D. thesis, University of Reading
    [Google Scholar]
  19. Jones H. E., Park R. W. A. 1967; The influence of medium composition on the growth and swarming of Proteus. J. gen. Microbiol 47:369
    [Google Scholar]
  20. Kandler O., Hund A., Zehender C. 1958; Cell wall composition in bacteria and L-forms of Proteus vulgaris. Nature, Lond 181:572
    [Google Scholar]
  21. Klieneberger-Nobel E. 1947; Morphological appearances of various stages in B. proteus and E. coli. J. Hyg., Camb 45:410
    [Google Scholar]
  22. Kvtttingen J. 1949a; Studies of the life-cycle of Proteus Hauser, Part I. Acta path, microbiol. scand 26:24
    [Google Scholar]
  23. Kvtttingen J. 1949b; Studies of the life-cycle of Proteus Hauser, Part II. Acta path, microbiol. scand 26:855
    [Google Scholar]
  24. Matitck A. T. R., Cheeseman G. C., Berridge N. J., Bottazzi V. 1956; The differentiation of species of lactobacilli and streptococci by means of paper partition chromatography. J. appl. Bact 19:310
    [Google Scholar]
  25. Mitchell P., Moyle J. 1951; Relationships between cell growth, surface properties and nucleic acid production in normal and penicillin-treated Micrococcus pyogenes. J. gen. Microbiol 5:421
    [Google Scholar]
  26. Moltke O. 1927 Contributions to the characterisation and systematic classification of Bact. proteus vulgaris (Hauser) Copenhagen: Leven and Munksgaard;
    [Google Scholar]
  27. Ogur M., Rosen C. 1950; The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid Archs Biochem 23:262
    [Google Scholar]
  28. Park J. T., Hancock R. 1960; A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J. gen. Microbiol 22:249
    [Google Scholar]
  29. Pollock M. R. 1947; The growth of H. pertussis on media without blood. Br. J. exp. Path 28:295
    [Google Scholar]
  30. Powell E. O. 1958; An outline of the pattern of bacterial generation times. J. gen. Microbiol 18:382
    [Google Scholar]
  31. Quadling C., Stocker B. A. D. 1957; The occurrence of rare motile bacteria in some non-motile Salmonella strains. J. gen. Microbiol 17:424
    [Google Scholar]
  32. Rhodes M. E. 1958; The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. J. gen. Microbiol 18:639
    [Google Scholar]
  33. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1957; Studies of biosynthesis in Escherichia coli. 2nd printing Pubis Carnegie Instn no 607
    [Google Scholar]
  34. Robinow C. F. 1942; The structure of the nuclear apparatus of bacteria. Proc. R. Soc. B 130:299
    [Google Scholar]
  35. Robinow C. F. 1944; Cytological observations on Bact. coli, Proteus vulgaris and various aerobic spore-forming bacteria with special reference to the nuclear structures. J. Hyg., Camb 43:413
    [Google Scholar]
  36. Rogers H. J., Mandelstam J. 1962; Inhibition of cell-wall-mucopeptide formation in Escherichia coli by benzylpenicillin and 6-[D(—)-α-aminophenylacetamido] pencillanic acid (Ampicillin). Biochem. J 84:299
    [Google Scholar]
  37. Russ-Münzer A. 1935; Das Schwärmphänomen bei Bacillus proteus. Zentbl. Bakt. ParasitKde (I. Abt. Orig.) 133:214
    [Google Scholar]
  38. SentheShanmuganathan S., Nickerson W. J. 1962; Composition of cells and cell walls of triangular and ellipsoidal forms of Trigonopsis variabilis. J. gen. Microbiol 27:451
    [Google Scholar]
  39. Smith D. G., Alwen J. 1966; Effect of activated charcoal on the swarming of Proteus. Nature, Lond 212:941
    [Google Scholar]
  40. Smith I. 1960; Chromatographic and Electrophoretic Techniques. Volume 1 Chromatography, 2nd ed. London: Heinemann;
    [Google Scholar]
  41. Trevelyan W. E., Procter D. P., Harrison J. S. 1950; Detection of sugars on paper chroma-tograms. Nature, Lond 166:444
    [Google Scholar]
  42. Wade H. E., Morgan D. M. 1957; The nature of the fluctuating ribonucleic acid in Escherichia coli. Biochem. J 65:321
    [Google Scholar]
  43. Webb R. B. 1954; A useful bacterial cell wall stain. J. Bact 67:252
    [Google Scholar]
  44. Wolfe M. 1957; The quantitative determination of amino acids by paper chromatography. A solvent to replace phenol. Biochim. biophys. Acta 23:186
    [Google Scholar]
  45. Work E. 1949; Chromatographic investigations of amino acids from micro-organisms. 1. The amino acids of Corynebacterium diphtheriae. Biochim. biophys. Acta 3:400
    [Google Scholar]
  46. Wright B. E., Anderson M. L. 1960; Protein and amino acid turnover during differentiation in the slime mould. I. Utilisation of endogenous amino acids and proteins Biochim. biophys. Acta 43:62
    [Google Scholar]
  47. ZoBell C. E., Cobet A. B. 1964; Filament formation by Escherichia coli at increased hydrostatic pressures. J. Bact 87:710
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-47-3-359
Loading
/content/journal/micro/10.1099/00221287-47-3-359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error