1887

Abstract

SUMMARY

A collection of 267 strains, representing many of the principal biotypes among aerobic pseudomonads, has been subjected to detailed study, with particular emphasis on biochemical, physiological and nutritional characters. A total of 146 different organic compounds were tested for their ability to serve as sources of carbon and energy. Other characters that were studied included : production of extracellular hydrolases; nitrogen sources and growth factor requirements H-chemolithotrophy; denitrifying ability; pigment production; ability to accumulate poly-p-hydroxybutyrate as a cellular reserve material; biochemical mechanisms of aromatic ring cleavage; and nature of the aerobic electron transport system. The resultant data have revealed many hitherto unrecognized characters of taxonomic significance. As a consequence, it has become possible to recognize among the biotypes examined a limited number of species which can be readily and clearly distinguished from one another by multiple, unrelated phenotypic differences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-43-2-159
1966-05-01
2021-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/43/2/mic-43-2-159.html?itemId=/content/journal/micro/10.1099/00221287-43-2-159&mimeType=html&fmt=ahah

References

  1. American Type Culture Collection, Catalogue of Cultures 1964, 7th edition. Rockville, Maryland:
    [Google Scholar]
  2. Audureau A. 1940; Étude du genre. Moraxella. Ann. Inst. Pasteur 64:126
    [Google Scholar]
  3. Bachrach U. 1957; The aerobic breakdown of uric acid by certain pseudomonads. J. gen. Microbiol 17:1
    [Google Scholar]
  4. Behrman E. J. 1962; Tryptophan metabolism in Pseudomonas. Nature, Lond 196:150
    [Google Scholar]
  5. Bühlmann X., Vischer W. A., Bruhin H. 1961; Die Identifizierung nieht Pyo-cyanin-bildender Stämme von. Pseudomonas aeruginosa. Zent. Bakt.ParasitKde 1. Abt. Orig. 183:368
    [Google Scholar]
  6. Burri R., Stutzer A. 1895; Über Nitrat zerstörende Bakterien und den durch dieselben bedingten Stickstoffverlust. Zentbl. Bakt. ParasüKde 2. Abt. 1257350392422
    [Google Scholar]
  7. Chester F. D. 1901 A Manual of Determinative Bacteriology New York: MacMillan;
    [Google Scholar]
  8. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J. cell. comp. Physiol 49:25
    [Google Scholar]
  9. Dagley S., Evans W. C., Ribbons D. W. 1960; New pathways in the oxidative metabolism of aromatic compounds by micro-organisms. Nature, Lond 188:560
    [Google Scholar]
  10. Davis G. H. G., Park R. W. A. 1962; A taxonomic study of certain bacteria currently classified as Vibrio species. J. gen. Microbiol 27:101
    [Google Scholar]
  11. Delafield F. P., Doudoroff M., Palleroni N. J., Lusty C. J., Contopoulou R. 1965; Decomposition of poly-β-hydroxybutyrate by pseudomonads. J. Bact 90:1455
    [Google Scholar]
  12. Demain A. L. 1965; Contamination of commercial l-leucine preparations with methionine and cystine. J. Bact 89:1162
    [Google Scholar]
  13. den Dooren de Jong L. E. 1926 Bijdrage tot de kennis van het mineralisatieproces Rotterdam: Nijgh and Van Ditmar;
    [Google Scholar]
  14. den Dooren de Jong L. E. 1927; Über Protaminophage-Bakterien. Zentbl. Bakt.ParasitKde 2. Abt. 71:193
    [Google Scholar]
  15. Derby T. J., Hammer B. W. 1931; Bacteriology of butter. IV. Bacteriological studies on surface taint butter. Res. Bull. Iowa agric. Exp. Stn145
    [Google Scholar]
  16. Doudoroff M. 1940; The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila, with a contribution to the problem of the direct assimilation of di- and polysaccharides. Enzymologia 9:59
    [Google Scholar]
  17. Doudoroff M., Stanier R. Y. 1959; Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature, Lond 183:1440
    [Google Scholar]
  18. Dowson W. J. 1939; On the systematic position and generic names of the Gram-negative bacterial plant pathogens. Zentbl. Bakt.ParasitKde 2. Abt. 100177
    [Google Scholar]
  19. Dworkin M., Foster J. W. 1956; Studies on Pseudomonas methanica (Söhngen). nov. comb. J. Bact 72:646
    [Google Scholar]
  20. Flügge C. 1886 Die Mikroorganismen 2. Aufl. Leipzig: F. C. W. Vogel;
    [Google Scholar]
  21. Forsyth W. G. C, Hayward A. C., Roberts J. B. 1958; Occurrence of poly-β-hydroxybutyric acid in aerobic Gram-negative bacteria. Nature, Lond 182:800
    [Google Scholar]
  22. Francis M. J. O., Hughes D. E., Kornberg H. L., Phizackerley P. J. R. 1963; The oxidation of l-malate by Pseudomonas sp. Biochem. J 89:430
    [Google Scholar]
  23. Fuchs A. 1959 On the synthesis and breakdown of levan by bacteria Thesis Delft: Waltman;
    [Google Scholar]
  24. Goré S. N. 1921; The cotton wool plug test for indole. Indian J. med. Res 8:505
    [Google Scholar]
  25. Gray P. H. H. 1928; The formation of indigotin from indole by soil bacteria. Proc. R. Soc B:102263
    [Google Scholar]
  26. Gray P. H. H., Thornton H. G. 1928; Soil bacteria that decompose certain aromatic compounds. Zentr. Bakt.ParasitKde 2. Abt. 7374
    [Google Scholar]
  27. Günther C. 1894; Über einen neuen, im Erdboden gefundenen Kommabacillus. Hyg. Rdsch 4:721
    [Google Scholar]
  28. Haynes W. C. 1951; Pseudomonas aeruginosa—its characterization and identification. J. gen. Microbiol 5:939
    [Google Scholar]
  29. Haynes W. C. 1957 In. Bergey’s Manual of Determinative Bacteriology, 7th ed.89 Baltimore: Williams and Wilkins;
    [Google Scholar]
  30. Haynes W. C., Rhodes L. J. 1962; Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bact 84:1080
    [Google Scholar]
  31. Hayward A. C, Forsyth W. G. C., Roberts J. B. 1959; Synthesis and breakdown of poly-β-hydroxybutyric acid by bacteria. J. gen. Microbiol 20:510
    [Google Scholar]
  32. Hills G. M. 1940; Ammonia production by pathogenic bacteria. Biochem. J 34:1057
    [Google Scholar]
  33. Hugh R. 1962; Comamonas terrigena comb.nov. with proposal of a neotype and request for an opinion. Int. Bull. bact. Nomencl. Taxon 12:34
    [Google Scholar]
  34. Hugh R., Ikari P. 1964; The proposed neotype strain of Pseudomonas alcaligenes Monias 1928. Int. Bull. bact. Nomencl. Taxon 14:103
    [Google Scholar]
  35. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bact 66:24
    [Google Scholar]
  36. Hugh R., Leifson E. 1963; A description of the type strain of Pseudomonas malto-philia. Int. Bull. bact. Nomencl. Taxon 13:133
    [Google Scholar]
  37. Hugh R., Ryschenkow E. 1960; An Alcaligenes-like Pseudomonas species. Bact. Proc78
    [Google Scholar]
  38. Hugh R., Ryschenkow E. 1961; Pseudomonas maltophilia, an alcaligenes-like species. J. gen. Microbiol 26:123
    [Google Scholar]
  39. Hugo W. B., Turner M. 1957; A soil bacterium producing an unusual blue pigment. J. Bact 73:154
    [Google Scholar]
  40. Iizuka H., Komagata K. 1963a; An attempt at grouping of the genus. Pseudomonas. J. gen. appl. Microbiol 9:73
    [Google Scholar]
  41. Iizuka H., Komagata K. 1963b; Taxonomy of the genus Pseudomonas with special reference to their modes of metabolism of carbon compounds. J. gen. appl. Microbiol 9:83
    [Google Scholar]
  42. Iizuka H., Komagata K. 1964; Microbiological studies on petroleum and natural gas. J. gen. appl. Microbiol 10:207
    [Google Scholar]
  43. Ikari P., Hugh R. 1963; Pseudomonas alcaligenes Monias 1928, a polar monotrichous dextrose non-oxidizer. Bact. Proc41
    [Google Scholar]
  44. Janota-Bassalik L., Wright L. D. 1964; Azelaic acid utilization by a Pseudomonas. J. gen. Microbiol 36:405
    [Google Scholar]
  45. Jessen O. 1965 Pseudomonas aeruginosa and other green fluorescent pseudomonads. A taxonomic study Copenhagen: Munksgaard;
    [Google Scholar]
  46. Kilby B. A. 1948; The bacterial oxidation of phenol to β-keto-adipic acid. Biochem. J 43:v
    [Google Scholar]
  47. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. clin. Med 44:301
    [Google Scholar]
  48. Klinge K., Graf W. 1959; Hämolyse, Eigelb-Reaktion und Amöbenaufiösung durch. Pseudomonas fluorescens. Zentbl. Bakt.ParasitKde 1. Abt. Orig. 174:243
    [Google Scholar]
  49. Kluyver A. J., de Ley J., Rijven A. 1951; The formation and consumption of lactobionic and maltobionic acids by Pseudomonas species. Antonie van Leeuwenhoek 17:1
    [Google Scholar]
  50. Künnemann O. 1898; Über denitrifizierende Mikroorganismen. Landw. VersWes 50:65
    [Google Scholar]
  51. Lautrop H., Jessen O. 1964; On the distinction between polar monotrichous and lophotrichous flagellation in green fluorescent pseudomonads. Acta path, microbiol. scand 60:588
    [Google Scholar]
  52. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  53. Leifson E. 1951; Staining, shape and arrangement of bacterial flagella. J. Bact 62:377
    [Google Scholar]
  54. Leifson E., Hugh R. 1954; A new type of polar monotrichous flagellation. J. gen. Microbiol 10:68
    [Google Scholar]
  55. Liu P. V. 1960; Identification of pathogenic pseudomonads by extracellular antigens. J. Bact 81:28
    [Google Scholar]
  56. Lwoff A., Audureau A. 1941; La nutrition carbonée de Moraxella Iwoffi. Ann. Inst. Pasteur 66:417
    [Google Scholar]
  57. Lysenko O. 1961; Pseudomonas. An attempt at a general classification. J. gen. Microbiol 25:379
    [Google Scholar]
  58. MacLeod R. A. 1965; The question of the existence of specific marine bacteria. Bact. Rev 29:9
    [Google Scholar]
  59. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus. Pseudomonas. J. gen. Microbiol 43:273
    [Google Scholar]
  60. Manual of Microbiological Methods 1957 Ed. by Committee on Bacteriological Technic of American Society for Microbiology New York: McGraw-Hill;
    [Google Scholar]
  61. Marcus P. I., Talalay P. 1956; Induction and purification of α- and β-hydroxy-steroid dehydrogenases. J. biol. Chem 218:661
    [Google Scholar]
  62. Merrick J. M., Doudoroff M. 1961; Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. Nature, Lond 189:890
    [Google Scholar]
  63. Merrick J. M., Doudoroff M. 1964; Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system. J. Bact 88:60
    [Google Scholar]
  64. Monias B. L. 1928; Classification of Bacterium alcaligenes, pyocyaneum ana fluorescens. J. infect. Dis 43:330
    [Google Scholar]
  65. Morris M. B., Roberts J. B. 1959; A group of pseudomonads able to synthesize poly-β-hydroxybutyric acid. Nature, Lond 183:1538
    [Google Scholar]
  66. Mudd S., Warren S. 1923; A readily cultivable vibrio filterable through Berkefeld ‘V’ candles, Vibrio percolans (new species). J. Bact 8:447
    [Google Scholar]
  67. Palleroni N. J., Doudoroff M. 1965; Identity of Pseudomonas saccharophila. J. Bact 89:264
    [Google Scholar]
  68. Park R. W. A. 1962; A study of certain heterotrophic polarly flagellate water bacteria: Aeromonas, Pseudomonas and Comamonas. J. gen. Microbiol 27:121
    [Google Scholar]
  69. Peel D., Quayle J. R. 1961; Microbial growth on Cx compounds. I. Isolation and characterization of Pseudomonas am 1. Biochem J 81:465
    [Google Scholar]
  70. Redfearn M. S., Palleroni N. J., Stanier R. Y. 1966; A comparative study of Pseudomonas pseudomallei and Bacillus mallei. J. gen. Microbiol 43:293
    [Google Scholar]
  71. Rhodes M. E. 1959; The characterization of Pseudomonas fluorescens. J. gen. Microbiol 21:221
    [Google Scholar]
  72. Rhodes M. E. 1961; The characterization of Pseudomonas fluorescens with the aid of an electronic computer. J. gen. Microbiol 25:331
    [Google Scholar]
  73. Rosenberg H., Ennor A. H., Morrison V. F. 1956; The estimation of arginine. Biochem. J 63:153
    [Google Scholar]
  74. Sebald M., Véron M. 1963; Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105:897
    [Google Scholar]
  75. Sherris J. C, Preston N. W., Shoesmith J. G. 1957; The influence of oxygen on the motility of a strain of Pseudomonas sp. J. gen. Microbiol 16:86
    [Google Scholar]
  76. Sherris J. C, Shoesmith J. G., Parker M. T., Breckon D. 1959; Tests for the rapid breakdown of arginine by bacteria: their use in the identification of pseudomonads. J. gen. Microbiol 21:389
    [Google Scholar]
  77. Shilo M. 1957; The enzymic conversion of the tartaric acids to oxalacetic acid. J. gen. Microbiol 16:472
    [Google Scholar]
  78. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15
    [Google Scholar]
  79. Skerman V. B. D. 1959 A Guide to the Identification of the Genera of Bacteria Baltimore: Williams and Wilkins Co;
    [Google Scholar]
  80. Slade H. D., Doughty C. C., Slamp W. C. 1954; The synthesis of high-energy phosphate in the citrulline ureidase reaction by soluble enzymes of Pseudomonas. Arch. Biochem. Biophys 48:338
    [Google Scholar]
  81. Smith L. 1961 Cytochrome systems in aerobic electron transport. The Bacteria Ed. by Gunsalus I. C., Stanier R. Y. 2365 New York: Academic Press;
    [Google Scholar]
  82. Sneath P. H. A. 1956; Cultural and biochemical characteristics of the genus. Chromo-bacterium. J. gen. Microbiol 15:70
    [Google Scholar]
  83. Sneath P. H. A. 1960; A study of the bacterial genus. Chromobaderium. Iowa St. J. Sci 34:243
    [Google Scholar]
  84. Sokal R. R., Sneath P. H. A. 1963 Principles of Numerical Taxonomy San Francisco: Freeman;
    [Google Scholar]
  85. Stanier R. Y. 1952; Indole formation from tryptophan: a correction. J. Bact 64:893
    [Google Scholar]
  86. Stanier R. Y., Hayaishi O. 1951; The bacterial oxidation of tryptophan : a study in comparative biochemistry. Science 114:326
    [Google Scholar]
  87. Stanier R. Y., Hayaishi O., Tsuchida M. 1951; The bacterial oxidation of tryptophan. I. A general survey of the pathways. J. Bact 62:355
    [Google Scholar]
  88. Starr M. P. 1959; Bacteria as plant pathogens. A. Rev. Microbiol 13:211
    [Google Scholar]
  89. Starr M. P., Blau W., Cosens G. 1960; The blue pigment of Pseudomonas lemonnieri. Biochem. Z 333:328
    [Google Scholar]
  90. Starr M. P., Stephens W. L. 1964; Pigmentation and taxonomy of the genus. Xantho-monas. J. Bact 87:293
    [Google Scholar]
  91. Stephenson M. 1939 Bacterial Metabolism London: Longmans, Green and Co;
    [Google Scholar]
  92. Stocks P. K., McCleskey C. S. 1964; Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bact 88:1065
    [Google Scholar]
  93. Stolp H., Starr M. P. 1963; Bdellvibrio baderiovorus gen. et sp.n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 29:217
    [Google Scholar]
  94. Thibault P. 1961; A propos. d’Ahaligenes faecalis. Ann. Inst. Pasteur 100:suppl.59
    [Google Scholar]
  95. Thornley M. J. 1960; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J. appl. Bact 23:37
    [Google Scholar]
  96. Tsuchida M., Hayaishi O., Stanier R. Y. 1952; The bacterial oxidation of tryptophan. IV. Analysis of two blocked oxidations. J. Bact 64:49
    [Google Scholar]
  97. van Iterson G. 1902; Accumulation experiments with denitrifying bacteria. Proc. Sect. Sci. K. ned. Akad. Wet 5:148
    [Google Scholar]
  98. van Niel C. B., Allen M. B. 1952; A note on Pseudomonas stutzeri. J. Bact 64:413
    [Google Scholar]
  99. Véron M. 1961; Pseudomonas pigmentés. Ann. Inst. Pasteur 100:suppl.16
    [Google Scholar]
  100. Williamson D. H., Wilkinson J. F. 1958; The isolation and estimation of poly-β-hydroxybutyrate inclusions of Bacillus species. J. gen. Microbiol 19:198
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-43-2-159
Loading
/content/journal/micro/10.1099/00221287-43-2-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error