1887

Abstract

Several phosphatases have been demonstrated in . The alkaline phosphatase, pH optimum 9·0, is a 5′-nucleotidase, attacking adenosine monophosphate and deoxyadenosine monophosphate, but catalyses also hydrolysis of -nitrophenyl phosphate. In the absence of exogenous nutrients this enzyme increases about 6-fold during differentiation. Its activity may in part be controlled through endproduct inhibition by orthophosphate which has been found to accumulate in the cells during sporulation. Exogenous orthophosphate and glucose repress the levels of alkaline phosphatase in the spores. The data support the conclusion that end product inhibition and repression collaborate to ensure maximal alkaline phosphatase activity during culmination. Exogenous adenosine and deoxyadenosine increase the alkaline phosphatase levels in the sorocarps.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-38-3-309
1965-03-01
2021-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/38/3/mic-38-3-309.html?itemId=/content/journal/micro/10.1099/00221287-38-3-309&mimeType=html&fmt=ahah

References

  1. Bonner J. T. 1959 The Cellular Slime Molds Princeton, N.J.: Princeton University Press;
    [Google Scholar]
  2. Bonner J. D., Chiquoine A. D., Kolderie M. Q. 1955; A histochemical study of differentiation in the cellular slime molds. J. expt. Zool 130:133
    [Google Scholar]
  3. Cox R. P., MacLeod C. M. 1963; Repression of alkaline phosphatase in human cell cultures by cystine and cysteine. Proc. natn. Acad. Set., U.S.A 49:504
    [Google Scholar]
  4. Dryer R. L., Tammes A. R., Routh J. I. 1957; The determination of phosphorus and phosphatase with IV-phenyl-p-phenylenediamine. J. biol. Chem 225:177
    [Google Scholar]
  5. Eadie G. S. 1952; On the evaluation of the constants Vm and in enzyme reactions. Science 116:688
    [Google Scholar]
  6. Fiske G. H., SubbaRow Y. 1925; The colorimetric determinations of phosphorus. J. biol. Chem 66:375
    [Google Scholar]
  7. Garen A., Levinthal C. 1960; A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. Biochim. biophys. Acta 38:470
    [Google Scholar]
  8. Gezelius K., Wright B. 1963; Alkaline phosphatase and inorganic phosphate in Dictyostelium discoideum. Bact. Proc p 68
    [Google Scholar]
  9. Heppel L. A., Harkness D. R., Hilmoe R. J. 1962; A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J. biol. Chem 237:841
    [Google Scholar]
  10. Heppel L. A., Hilmoe R. J. 1951; Purification and properties of 5'-nucleotidase. J. biol. Chem 188:665
    [Google Scholar]
  11. Herman E. C., Wright B. E. 1959; A 5'-nucleotidase activated by ferrous iron. J. biol. Chem 234:122
    [Google Scholar]
  12. Horiuchi T., Horiuchi S., Mizuno D. 1959; A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature, Lond 183:1529
    [Google Scholar]
  13. Kornberg A., Pricer W. E. 1951; Enzymic phosphorylation of adenosine and 2,6-diaminopurine riboside. J. biol. Chem 193:481
    [Google Scholar]
  14. Krichevsky M. I., Wright B. E. 1963; Environmental control of the course of development in Dictyostelium discoideum. J. gen. Microbiol 32:195
    [Google Scholar]
  15. Krivanek J. O. 1956; Alkaline phosphatase activity in the developing slimp mold, Dictyostelium discoideum Raper. J. exp. Zool 133:459
    [Google Scholar]
  16. Krivanek J. O., Krivanek R. C. 1958; The histochemical localization of certain biochemical intermediates and enzymes in the developing slime mold, Dictyostelium discoideum Raper. J. exp. Zool 137:89
    [Google Scholar]
  17. Liddel G. U., Wright B. E. 1961; The effect of glucose on respiration of the differentiating slime mold. Develop. Biol 3:265
    [Google Scholar]
  18. Neidhardt F. C., Magasanik B. 1956; The effect of glucose on the induced biosynthesis of bacterial enzymes in the presence and absence of inducing agents. Biochim. biophys. Acta 21:324
    [Google Scholar]
  19. Raper K. B. 1951; Isolation, cultivation and conservation of simple slimp molds. Quart. Rev. Biol 26:169
    [Google Scholar]
  20. Reis J. L. 1951; The specificity of phosphomonoesterases in human tissues. Biochem. J 48:548
    [Google Scholar]
  21. Schwartz J. H. 1963; The phosphorylation of alkaline phosphatase. Proc. natn. Acad. Sci., V.S.A 49:871
    [Google Scholar]
  22. Sulkowski E., Bjork W., Laskowski M.S.K. 1963; A specific and non-specific alkaline monophosphatase in the venom of Bothrops atrox and their occurrence in the purified venom phosphodiesterase. J. biol. Chem 238:2477
    [Google Scholar]
  23. Sussman M. 1961; Cultivation and serial transfer of the slime mould Dictyostelium, discoideum in liquid nutrient medium. J. gen. Microbiol 25:375
    [Google Scholar]
  24. Torriani A. 1960; Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. biophys. Acta 38:460
    [Google Scholar]
  25. Whiteley H. R., Oishi M. 1963; An increase in alkaline phosphatase in an in vitro system derived from Bacillus subtilis. Biochem. biophys. Res. Comm 13:6
    [Google Scholar]
  26. Wright B. E. 1960; On enzyme-substrate relationships during biochemical differentiation. Proc. natn. Acad. Sci., U.S.A 46:798
    [Google Scholar]
  27. Wright B. E. 1964; Biochemistry of Acrasiales. In Biochemistry and Physiology of Protozoa Ed. by Hutner S. 3 New York: Academic Press;
    [Google Scholar]
  28. Wright B. E., Anderson M. L. 1960; Protein and amino acid turnover during differentiation in the slime mold. II. Incorporation of pSJmethionine into the amino acid pool and into protein. Biochim. biophys. Acta 43:67
    [Google Scholar]
  29. Wright B. E., Bard S. 1963; Glutamate oxidation in the differentiating slime mold. I. Studies in vivo Biochim. biophys. Acta 71:45
    [Google Scholar]
  30. Wright B. E., Bruhmuller M., Ward C. 1964; Studies in vivo on hexose metabolism in Dictyostelium, discoideum. Develop. Biol. 9:287
    [Google Scholar]
  31. Zamenhof S. 1957; Preparation and assay of deoxyribonucleic acid from animal tissue. Meth. Enzymol 3:696
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-38-3-309
Loading
/content/journal/micro/10.1099/00221287-38-3-309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error