1887

Abstract

Summary: A given race of phage grows in a relatively limited range of bacteria. A coli phage, for instance, will not lyse a staphylococcus or a corynebacterium. Within these limits, however, some phages have a much wider host-range than others: some attack only one or a few bacterial strains; some a whole species; and some can lyse members of several species which on other grounds are considered to be not too distantly related. For instance, some pasteurella phages also attack strains of Salmonella and Shigella (Lazarus & Gunnison, 1947). The phage-sensitivity of a strain as a basis for bacterial classification can be interpreted in two ways, just as there are two levels at which bacterial classification can itself be regarded. That is to say, either as just another phenotypic character which the two strains may have in common; or at the level of the genetic material, the nucleic acid, so that, if two bacterial strains interact with the same phage at the genetic level, each of the strains is manifesting some degree of genetic compatibility with the phage, and thus with each other.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-36-3-461
1964-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/36/3/mic-36-3-461.html?itemId=/content/journal/micro/10.1099/00221287-36-3-461&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Burns S. N. 1960; Genetic variation in the sex factor of Escherichia coli. J. Bact 79:321
    [Google Scholar]
  2. Amati P. 1962; Abortive infection of Pseudomonas pyocyanea and Serratia marcescens with coliphage P1. J. Bact 83:433
    [Google Scholar]
  3. Anderson E. S., Fraser A. 1955; The influence of the factors determining Vi type specificity in Salmonella typhi on the adaptation of Vi-phage II. J. gen. Microbiol 13:519
    [Google Scholar]
  4. Anderson E. S., Fraser A. 1956; The statistical distribution of phenotypically modifiable particles and host-range mutants in populations of Vi-phage II. J. gen. Microbiol 15:225
    [Google Scholar]
  5. Anderson E. S., Williams R. E. O. 1956; Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J. clin. Path 9:94
    [Google Scholar]
  6. Arber W. 1958; Transduction des caractères Gal par le bactériophage λ. Arch. sci. (Geneva) 11:259
    [Google Scholar]
  7. Arber W. 1962; Spécificités biologiques de l’acide désoxyribonucléique. Path. Microbiol., Lausanne 25:668
    [Google Scholar]
  8. Arber W., Dussoix D. 1962; Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. J. mol. Biol 5:18
    [Google Scholar]
  9. Arber W., Hattman S., Dussoix D. 1953; On the host-controlled modification of bacteriophage λ. Virology 21:30
    [Google Scholar]
  10. Bertani G. 1958; Lysogeny. Adv. Virus Res 5:151
    [Google Scholar]
  11. Bertani G., Weigle J. J. 1953; Host controlled variation in bacterial viruses. J. Bact 65:113
    [Google Scholar]
  12. Burnet F. M. 1930; Bacteriophage activity and the antigenic structure of bacteria. J. Path. Bact 33:647
    [Google Scholar]
  13. Cairns J. 1963; The bacterial chromosome and its manner of replication, as seen by autoradiography. J. mol. Biol 6:208
    [Google Scholar]
  14. Campbell A. 1959; Ordering of genetic sites in bacteriophage λ by the use of galactose- transducing defective prophage. Virology 9:293
    [Google Scholar]
  15. Campbell A. 1962; Episomes. Adv. Genet 11:101
    [Google Scholar]
  16. Chandler B., Hayashi M., Hayashi M. N., Spiegelman S. 1964; Circularity of the replicating form of a single-stranded DNA virus. Science 143:47
    [Google Scholar]
  17. Craigie J., Brandon K. F. 1936; Bacteriophage specific for the O-resistant V form of B. typhosus. J. Path. Bact 43:233
    [Google Scholar]
  18. Crawford E. M., Gesteland R. F. 1964; The adsorption of bacteriophage R 17. Virology 22:165
    [Google Scholar]
  19. Dussoix D., Arber W. 1962; Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage λ. J. mol. Biol 5:37
    [Google Scholar]
  20. Epstein R. H., Bolle A., Steinberg C. M., Kellenberger E., Boy de la Tour E., Chevalley R., Edgar R. S., Susman M., Denhardt G. H., Lielausis A. 1963; Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harb. Symp. quant. Biol 28:375
    [Google Scholar]
  21. Erikson R. L., Szybalski W. 1964; The Cs2SO4 equilibrium density gradient and its application for the study of T-even phage DNA: glucosylation and replication. Virology 22:111
    [Google Scholar]
  22. Falkow S., Rownd R., Baron L. S. 1962; Genetic homology between Escherichia coli K12 and Salmonella. J. Bact 84:1303
    [Google Scholar]
  23. Falkow S., Wohlhieter J. A., Citarella R., Baron L. S. 1963; Transfer of episomes to Proteus. Bact. Proc p. 31
    [Google Scholar]
  24. Felix A. 1953; Bacteriophage not a virus?. Symp. Soc. gen. Microbiol 2:203
    [Google Scholar]
  25. Foss H. M., Stahl F. W. 1963; Circularity of the genetic map of bacteriophage T4. Genetics 48:1659
    [Google Scholar]
  26. Fraser D. K. 1957; Host range mutants and semitemperate mutants of bacteriophage T3. Virology 3:527
    [Google Scholar]
  27. Glover S. W., Schell J., Symonds N., Stacey K. A. 1963; The control of host-induced modification by phage P1. Genet. Res., Camb 4:480
    [Google Scholar]
  28. Gold M., Hurwitz J., Anders M. 1963; The enzymatic methylation of RNA and DNA. II. On the species specificity of the methylation enzymes. Proc. nat. Acad. Sci., Wash 50:164
    [Google Scholar]
  29. Green M. H. 1963; Complementarity between lambda (λ) phage and Escherichia coli. Proc. nat. Acad. Sci., Wash 50:1177
    [Google Scholar]
  30. Jacob F. 1954; Mutation d’un bactériophage induite par l’irradiation des seules bactérieshôtes avant l’infection. C. r. hebd. Séanc. Acad. Sci., Paris 238:732
    [Google Scholar]
  31. Jacob F., Wollman E. L. 1957; Genetic aspects of lysogeny. In The Chemical Basis of Heredity McElroy W. D., Glass B. Ed. by p. 468 Baltimore: Johns Hopkins Press;
    [Google Scholar]
  32. Jacob F., Wollman E. L. 1961 Sexuality and the Genetics of Bacteria New York: Academic Press;
    [Google Scholar]
  33. Josse J., Kaiser A. D., Kornberg A. 1961; Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest-neighbour base sequences in deoxyribonucleic acid. J. biol. Chem 236:864
    [Google Scholar]
  34. Kaiser A. D. 1957; Mutations in a temperate bacteriophage affecting its ability to lysogenise Escherichia coli. Virology 3:42
    [Google Scholar]
  35. Lanni F. 1960; Genetic significance of microbial DNA composition. Perspectives in Biol, and Med 3:418
    [Google Scholar]
  36. Lazarus A. S., Gunnison J. B. 1947; The action of Pasteurella pestis bacteriophage on strains of Pasteurella, Salmonella and Shigella. J. Bact 53:705
    [Google Scholar]
  37. Lederberg E. M., Lederberg J. 1953; Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51
    [Google Scholar]
  38. Levine M. 1957; Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology 3:22
    [Google Scholar]
  39. Levinthal C., Signer E. R., Fetherolf K. 1962; Reactivation and hybridization of reduced alkaline phosphatase. Proc. nat. Acad. Sci., Wash 48:1230
    [Google Scholar]
  40. Luria S. E., Burrous J. W. 1957; Hybridization between Escherichia coli and Shigella. J. Bact 74:461
    [Google Scholar]
  41. Mäkelä P. H., Lederberg J., Lederberg E. M. 1962; Patterns of sexual recombination in enteric bacteria. Genetics 47:1427
    [Google Scholar]
  42. Markert C. L., Møller F. 1959; Multiple forms of enzymes: tissue, ontogenetic and species specific patterns. Proc. nat. Acad. Sci., Wash 45:753
    [Google Scholar]
  43. Marmur J., Doty P. 1959; Heterogeneity in deoxyribonucleic acids. 1. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature; Lond: 1831427
    [Google Scholar]
  44. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. A. Rev. Microbiol 17:329
    [Google Scholar]
  45. Marmur J., Rownd R., Falkow S., Baron L. S., Schildkraut C., Doty P. 1961; The nature of intergenetic episomal infection. Proc. nat. Acad. Sci., Wash 47:972
    [Google Scholar]
  46. Martin G., Jacob F. 1962; Transfert de l’episome sexual d’Escherichia coli à Pasteurella pestis. C. r. hebd. Seanc. Acad. Sci., Paris 254:3589
    [Google Scholar]
  47. Meynell E. W. 1961; A phage, øX, which attacks motile bacteria. J. gen. Microbiol 25:253
    [Google Scholar]
  48. Meynell E. W. 1963; Reverting and non-reverting rough variants of Bacillus anthracis. J. gen. Microbiol 32:55
    [Google Scholar]
  49. Nagata T. 1963; The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc. nat. Acad. Sci., Wash 49:55
    [Google Scholar]
  50. Nicolle P., Grabar J., Gilbert P. 1946; Fréquence de la lysogénéité et moindre frequence apparente de la lysosensibilité parmi les bacilles paratyphiques B. Annls. Inst. Pasteur, Paris 72:81
    [Google Scholar]
  51. Nicolle P., Jude A., Diverneau G. 1953; Antigènes entravant l’action de certains bactériophages. Annls. Inst. Pasteur, Paris 84:27
    [Google Scholar]
  52. Okubo S., Stodolsky M., Bott K., Strauss B. 1963; Separation of the transforming and viral deoxyribonucleic acids of a transducing bacteriophage of Bacillus subtilis. Proc. nat. Acad. Sci., Wash 50:679
    [Google Scholar]
  53. Rakieten M. L., Rakieten T. L. 1937; Relationships between staphylococci and bacilli belonging to the subtilis group as shown by bacteriophage absorption. J. Bact 34:285
    [Google Scholar]
  54. Roman H., Jacob F. 1957; Effet de la lumière ultraviolette sur la recombinaison génétique entre allèles chez la levure. C. r. hebd. Séanc. Acad. Sci., Paris 245:1032
    [Google Scholar]
  55. Rountree P. M. 1956; Variations in a related series of staphylococcal bacteriophages. J. gen. Microbiol 15:266
    [Google Scholar]
  56. Schildkraut C. L., Marmur J., Doty P. 1961; The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. molec. Biol 3:595
    [Google Scholar]
  57. Sertic V., Boulgakov N. A. 1936; Bactériophages specifiques pour des variétés bactériennes flagellées. C. r. Séanc. Soc. Biol 123:887
    [Google Scholar]
  58. Signer E. R., Torriani A., Levinthal C. 1961; Gene expression in intergeneric merozygotes. Cold Spring Harb. Symp. quant. Biol 26:31
    [Google Scholar]
  59. Spizizen J. 1957; Infection of protoplasts by disrupted T2 virus. Proc. not. Acad. Sci., Wash 43:694
    [Google Scholar]
  60. Sueoka N., Marmur J., Doty P. 1959; Heterogeneity in deoxyribonucleic acids. II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature; Lond: 1831429
    [Google Scholar]
  61. Tessman E. S., Ozaki T. 1960; The interaction of phage S13 with ultraviolet-irradiated host cells and properties of the ultraviolet-irradiated phage. Virology 12:431
    [Google Scholar]
  62. Uetake H., Luria S. E., Burrous J. W. 1958; Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. Virology 5:68
    [Google Scholar]
  63. Weigle I. J., Meselson M., Paigen K. 1959; Density alterations associated with transducing ability in the bacteriophage λ. J. molec. Biol 1:379
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-36-3-461
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error