1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-29-1-59
1962-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/29/1/mic-29-1-59.html?itemId=/content/journal/micro/10.1099/00221287-29-1-59&mimeType=html&fmt=ahah

References

  1. Aronson A. I., Spiegelman S. 1958; On the use of chloramphenicol—inhibited systems for investigating RNA and protein synthesis. Biochim. biophys. Acta 29:214
    [Google Scholar]
  2. Borek E., Ryan A. 1958; Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. 2. The concomitance of ribonucleic acid synthesis with resumed protein synthesis. J. Bad. 75:72
    [Google Scholar]
  3. Bowen T. J., Dagley S., Sykes J., Wild D. G. 1961; Nature of the ribosomes present in bacteria and yeast: a re-appraisal. Nature, Lond. 189:638
    [Google Scholar]
  4. Chantrenne H., Devreux S. 1960; Action de la 8-azaguanine sur la synthèse des protéines et des acides nucléiques chez Bacillus cereus. Biochim. biophys. Acta 39:486
    [Google Scholar]
  5. Dagley S., Sykes J. 1959; Effect of drugs on components of bacterial cytoplasm. Nature, Lond. 183:1608
    [Google Scholar]
  6. Dagley S., Sykes J. 1960; Bacterial ribonucleoprotein synthesized in the presence of chloramphenicol. Biochem.J. 74: lip
    [Google Scholar]
  7. Demoss J. A., Novelli D. 1956; An amino acid dependent exchange between 32P labelled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22:49
    [Google Scholar]
  8. Gale E. F. 1953; Assimilation of amino acids by Gram-positive bacteria and some actions of antibiotics thereon. Advanc. Protein Chem. 8:285
    [Google Scholar]
  9. Gros F., Hiatt H., Gilbert W., Kurland C. G., Risebrough R. W., Watson J. D. 1961; Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, Lond. 190:581
    [Google Scholar]
  10. Hahn F. E., Schaechter M., Ceglowski W. S., Hopps H. E., Ciak J. 1957; Interrelations between nucleic acid and protein biosynthesis. 1. Synthesis and fate of bacterial nucleic acids during exposure to, and recovery from, the action of chloramphenicol. Biochim. biophys. Acta 26:469
    [Google Scholar]
  11. Horowitz J., Lombard A., Chargaff E. 1958; Aspects of the stability of a bacterial ribonucleic acid. J. Mol. Chem. 233:1517
    [Google Scholar]
  12. Lacks S., Gros F. 1960; A metabolic study of the RNA-aminoacid complexes in Escherichia coli. J. mol. Biol. 1:301
    [Google Scholar]
  13. Mandel H. G., Markham R. 1958; The effects of 8-azaguanine on the biosynthesis of ribonucleic acid in Bacillus cereus. Biochem. J. 69:297
    [Google Scholar]
  14. Mandelstam J. 1960; The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bact. Rev. 24:289
    [Google Scholar]
  15. Matthews R. E. F., Smith J. D. 1956; Distribution of 8-azaguanine in the nucleic acids of Bacillus cereus. Nature, Lond. 177:271
    [Google Scholar]
  16. McQuillen K. 1961; Protein synthesis in vivo: the involvement of ribosomes in Escherichia coli. In Protein Biosynthesis p. 263 ed. by Harris R. J. C. London: Academic Press;
    [Google Scholar]
  17. Nathans D., Lipmann F. 1961; Aminoacid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc. not. Acad. Sci., Wash. 47:497
    [Google Scholar]
  18. Nomura M., Watson J. D. 1959; Ribonucleoprotein particles within chloromycetin-inhibited Escherichia coli. J. mol. Biol. 1:204
    [Google Scholar]
  19. Pardee A. B., Paigen K., Prestidge L. S. 1957; A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. biophys. Acta 23:162
    [Google Scholar]
  20. Roodyn D. B., Mandel H. G. 1960; The differential effect of 8-azaguanine on cell wall and protoplasmic protein synthesis in Bacillus cereus. J. Mol. Chem. 235:2036
    [Google Scholar]
  21. Takeda Y., Hayashi S., -I., Nakagawa H., Suzuki F. 1960; The effect of puromycin on ribonucleic acid and protein synthesis. J. Biochem. (Tokyo) 48:169
    [Google Scholar]
  22. Tissières A., Schlessinger D., Gros F. 1960; Amino acid incorporation into proteins by Escherichia coli. Proc. nat. Acad. Sci., Wash. 46:1450
    [Google Scholar]
  23. Yarmolinski M. D., De la Haba G. L. 1959; Inhibition by puromycin of amino acid incorporation into protein. Proc. nat. Acad. Sci., Wash. 44:189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-29-1-59
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error