1887

Abstract

SUMMARY: Mutant strains of requiring methionine for growth were isolated and their growth responses to inorganic and organic sulphur sources studied. It is suggested that methionine is synthesized in this mould from inorganic sulphate through sulphite, thiosulphate and cysteine. The mutant strains genetically blocked in the reaction from thiosulphate to cysteine could be divided into two genetically different groups by means of the heterokaryosis test; heterokaryons formed between these two groups were able to grow on sulphate as sole sulphur source because of the syntrophic action of two different types of nuclei. It was further shown that cysteine-S-sulphonate supported good growth of one of the two groups, whereas the other group showed no growth on this compound. It was concluded that the metabolic conversion of thiosulphate to cysteine involves cysteine-S-sulphonate as an intermediate. Mutant strains responded to sulphide in the same way as to thiosulphate. From this and other evidence, it is suggested that sulphide is utilized by way of thiosulphate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-27-2-221
1962-02-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/27/2/mic-27-2-221.html?itemId=/content/journal/micro/10.1099/00221287-27-2-221&mimeType=html&fmt=ahah

References

  1. Baxter C. F., van Reen R., Pearson P. B., Rosenberg C. 1958; Sulfide oxidation in rat tissues. Biochim. biophys. Acta 27:584
    [Google Scholar]
  2. Chapeville F., Fromageot P. 1954; La formation enzymatique de 1’acide cysteine sulphinique a partir de sulfide. Biochim. biophys. Acta 14:415
    [Google Scholar]
  3. Fling M., Horowitz N. H. 1951; Threonine and homoserine in extracts of a methio-nineless mutant of Neurospora. J. biol. Chem 190:277
    [Google Scholar]
  4. Fries N. 1947; Experiments with different methods of isolating physiological mutations of filamentous fungi. Nature, Lond 159:199
    [Google Scholar]
  5. Hilz H., Kittler M. 1958; Enzymatische Reduktion von Sulfat zu Sulfid. Biochim. biophys. Acta 30:650
    [Google Scholar]
  6. Hilz H., Kittler M., Knape G. 1959; Die Reduktion von Sulfat in der Hefe. Biochem. Z 332:151
    [Google Scholar]
  7. Hockenhull D. J. D. 1949; The sulphur metabolism of mould fungi: the use of ‘biochemical mutant’ strains of Aspergillus nidulans in elucidating the biosynthesis of cysteine. Biochim. biophys. Acta 3:326
    [Google Scholar]
  8. Horowitz N. H. 1950; Biochemical genetics of Neurospora. Advanc. Genet 3:33
    [Google Scholar]
  9. Kaji A., Gregory J. D. 1959; Mechanism of sulfurylation of choline. J. biol. Chem 234:3007
    [Google Scholar]
  10. Kolthoff I. M., Stricks W. 1951; Polarographic investigations of reactions in aqueous solutions containing copper and cysteine (cystine). II. Reactions in ammoniacal medium in the presence and absence of sulfite. J. Amer. chem. Soc 73:1728
    [Google Scholar]
  11. Lampen J. O., Roepke R. R., Jones M. J. 1947; Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Arch. Biochem 13:55
    [Google Scholar]
  12. Lederberg J., Tatum E. L. 1946; Detection of biochemical mutants of microorganisms. J. biol. Chem 165:381
    [Google Scholar]
  13. Lezius A. 1959 Thiosulfardesulfhydrase und Sulfitreduktase, zwei Enzyme des Schwefelstoffwechsels der Backerhefe Dissertation Universitat zu Miinchen;
    [Google Scholar]
  14. Nakamura T., Sato R. 1960; Cysteine-S-sulphonate as an intermediate in microbial synthesis of cysteine. Nature, Lond 185:163
    [Google Scholar]
  15. Pontecorvo G. 1947; Genetic systems based on heterokaryosis. Cold Spr. Harb. Symp. quant. Biol 11:193
    [Google Scholar]
  16. Pontecorvo G. 1953; The genetics of Aspergillus nidulans . Advanc. Genet 5:141
    [Google Scholar]
  17. Pontecorvo G., Sermonti G. 1954; Parasexual recombination in Penicillium ehrysogenum . J. gen. Microbiol 11:94
    [Google Scholar]
  18. Pontecorvo G., Gloor E. T., Forbes E. 1954; Analysis of mitotic recombination in Aspergillus nidulans . J. Genet 52:226
    [Google Scholar]
  19. Ragland J. B. 1959; The role of ATP-sulfurylase in the biosynthesis of cysteine and methionine by Neurospora. Arch. Biochem. Biophys 84:541
    [Google Scholar]
  20. Schlossmann K., Lynen F. 1957; Biosynthese des Cysteins aus Serin und Schwefelwasserstoff. Biochem. Z 328:591
    [Google Scholar]
  21. Schmidt E., Wagner W. 1904; Uber Cholin, Neurin und verwandte Verbindungen. II. Cholin. Liebigs Ann 337:51
    [Google Scholar]
  22. Shepherd C. J. 1956; Pathway of cysteine synthesis in Aspergillus nidulans . J. gen. Microbiol 15:29
    [Google Scholar]
  23. Spencer B., Harada T. 1960; The role of choline sulphate in the sulphur metabolism of fungi. Biochem. J 77:305
    [Google Scholar]
  24. Teas H. J., Horowitz N. H., Fling M. 1948; Homoserine as a precursor of threonine and methionine in Neurospora. J. biol. Chem 172:651
    [Google Scholar]
  25. Wilson L. G., Bandurski R. S. 1958; Enzymatic reduction of sulfate. J. Amer. chem. Soc 80:5576
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-27-2-221
Loading
/content/journal/micro/10.1099/00221287-27-2-221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error