1887

Abstract

SUMMARY: Five spontaneous erythromycin resistance mutations arising independently in a pneumococcal strain have been studied. Three distinct levels of resistance are represented by these mutants (0.1, 1.0, and 10.0 μg. erythromycin per ml.). The mutations conferring resistance can be transferred to the sensitive parental strain through transforming DNA preparations. The transfer is discrete, in that the full level of resistance of the donor strain is always conferred upon the recipient. The length of time required for phenotypic expression of a mutation acquired by transformation depends on the particular marker.

A mutation in a given strain may either be replaced by or combine with a different mutation transferred from a donor DNA preparation. In the case of combination, the DNA of the recombinant is capable of transferring each of the mutations as well as the entire complex of mutations possessed by the recombinant. The frequency of transfer of the complex demonstrates the degree of linkage of the separable mutations. A group of mutations in a given recombinant strain may either display antagonistic, synergistic or non-synergistic effects on the phenotype.

Reverse mutations towards erythromycin-sensitivity generally involve alteration at the originally mutated sites, or at very closely linked sites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-26-2-277
1961-10-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/26/2/mic-26-2-277.html?itemId=/content/journal/micro/10.1099/00221287-26-2-277&mimeType=html&fmt=ahah

References

  1. Benzer S. 1955; The fine structure of a genetic region in bacteriophage.. Proc. nat. Acad. Sci., Wash. 41:344
    [Google Scholar]
  2. Brown R. G., Emerson G. A. 1953; In vitro antagonism of pantothenic acid, β-alanine and l-carnosine to inhibitory effects of erythromycin upon the growth of Corynebacterium diphtheriae. Fed. Proc. 12:304
    [Google Scholar]
  3. Bryan B. 1961; Genetic modifiers of streptomycin resistance in Pneumococcus.. J. Bad. (in the Press)
    [Google Scholar]
  4. Demerec M. 1945; Production of Staphylococcus strains resistant to various concentrations of penicillin.. Proc. nat. Acad. Sci., Wash. 31:16
    [Google Scholar]
  5. Demerec M. 1956; A comparative study of certain gene loci in Salmonella. Cold Spr. Harb. Symp. quant. Biol. 21:113
    [Google Scholar]
  6. Ephrati-Elizur E., Srinivasan P. R., Zamenhof S. 1961; Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc. nat. Acad. Sci., Wash. 47:56
    [Google Scholar]
  7. Ephrussi-Taylor H. E. 1951; Transformations allogenes du Pneumocoque.. Exp. Cell Res 2:589
    [Google Scholar]
  8. Ephrussi-Taylor H. E. 1961; Recombination analysis in microbial systems.. In Growth; Molecule, Cell, Organism New York: Basic Books;
    [Google Scholar]
  9. Fox M. 1959; Phenotypic expression of a genetic property introduced by deoxyribo-nucleate.. J. gen. Physiol. 42:737
    [Google Scholar]
  10. Fox M., Hotchkiss R. D. 1957; Initiation of bacterial transformation.. Nature, Lond. 179:1322
    [Google Scholar]
  11. Goodgal S. H., Herriot R. M. 1957; A study of linked transformations in Hemophilus influenzae. Bee. Genet. Soc. Amer. 26:272
    [Google Scholar]
  12. Green D. Mc D 1957; The transformation of resistance to erythromycin in Diplococcus pneumoniae. Microb. Genet. Bull. 15:13
    [Google Scholar]
  13. Green D. McD 1959; A host-specific variation affecting relative frequency of transformation of two markers in Pneumococcus. Exp. Cell. Res. 18:466
    [Google Scholar]
  14. Haight T. H., Finland M. 1952a; The antibacterial action of erythromycin. Proc. Soc. exp. Biol., N.Y. 81:175
    [Google Scholar]
  15. Haight T. H., Finland M. 1952b; Resistance of bacteria to erythromycin. Proc. Soc. exp. Biol. N.Y. 81:183
    [Google Scholar]
  16. Haight T. H., Finland M. 1952c; Observations on the mode of action of erythromycin. Proc. Soc. exp. Biol. N.Y. 81:188
    [Google Scholar]
  17. Hotchkiss R. D. 1951; Transfer of penicillin resistance in pneumococci by the deoxy-ribonucleate derived from resistant cultures.. Cold Spr. Harb. Symp. quant. Biol. 16:457
    [Google Scholar]
  18. Hotchkiss R. D., Evans A. H. 1958; Analysis of the complex sulfonamide resistance locus of Pneumococcus. Cold Spr. Harb. Symp. quant. Biol. 23:85
    [Google Scholar]
  19. Hotchkiss R. D., Marmur J. 1954; Double marker transformations as evidence of linked factors in deoxyribonucleate transforming agents.. Proc. nat. Acad. Sci., Wash. 40:55
    [Google Scholar]
  20. Lacks S., Hotchkiss R. D. 1960; A study of the genetic material determining an enzyme activity in Pneumococcus. Biochim. biophys. Acta, 39:508
    [Google Scholar]
  21. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants.. J. Bact. 63:399
    [Google Scholar]
  22. Pontecorvo G. 1952; Genetical analysis of cell organization.. Symp. Soc. exp. Biol. 6:218
    [Google Scholar]
  23. Pritchard R. H. 1955; The linear arrangement of a series of alleles in Aspergillus nidulans. Heredity, 9:343
    [Google Scholar]
  24. Ravin A. W. 1956; The properties of bacterial transforming systems.. Brookhaven Symp. Biol. 8:33
    [Google Scholar]
  25. Ravin A. W. 1959; Reciprocal capsular transformations of pneumococci.. J. Bact. 77:296
    [Google Scholar]
  26. Ravin A. W. 1960; Linked mutations borne by deoxyribonucleic acid controlling the synthesis of capsular polysaccharide in pneumococcus.. Genetics, 45:1387
    [Google Scholar]
  27. Ravin A. W. 1961; The genetics of transformation.. Advanc. Genet. 10:61
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-26-2-277
Loading
/content/journal/micro/10.1099/00221287-26-2-277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error