1887

Abstract

SUMMARY

A strain of , grown in a medium containing a suboptimal concentration (0·4 × 10m) of biotin, was shown to contain less deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein but, during the early stages of growth, increased concentrations of acid-soluble ultraviolet (u.v.)-absorbing substances, as compared with the same organism grown in the presence of an optimal concentration (8·0 × 10 ) of biotin. The concentration of acid-soluble u.v.-absorbing substances in the biotin-deficient yeast was higher, irrespective of the nature of the extracting acid (0·2-perchloric acid, 5% (w/v) and 10% (w/v) trichloroacetic acid, or 5 % (v/v) -butanol in /15 KHPO). Raising the temperature of extraction from 3° to 21° or 30° had little or no effect on the amounts of these u.v.-absorbing substances extracted. Analyses of the nucleotides and nucleo- bases in the yeast RNA showed these to have a ratio of purine:pyrimidine bases of 1·00–1·15, with the exception of the RNA from 5-day cultures of biotin-deficient yeast which had a slightly but consistently higher ratio. The significance of these results is discussed in relation to the metabolic function of biotin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-24-1-69
1961-01-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/24/1/mic-24-1-69.html?itemId=/content/journal/micro/10.1099/00221287-24-1-69&mimeType=html&fmt=ahah

References

  1. Bonar R. A., Duggan E. L. 1955; The preparation of ribonucleoprotein from yeast. J. biol. Chem 212:697
    [Google Scholar]
  2. Carlo F. J. Di, Schultz A. S. 1948; Yeast nucleic acid. I. Quantitative determination by spectrophotometry; ammonium and phosphate ions as factors in biosynthesis. Arch. Biochem 17:293
    [Google Scholar]
  3. Chamberlain N., Rainbow C. 1954; The formation of diazotizable amine and hypoxanthine by yeast: possible implications in the biosynthesis of purines. J. gen. Microbiol 11:180
    [Google Scholar]
  4. Chamberlain N., Cutts N. S., Rainbow C. 1952; The formation of pigment and arylamine by yeasts. J. gen. Microbiol 7:54
    [Google Scholar]
  5. Chambers E. A., Delwiche E. A. 1954; Biotin and succinate decarboxylation. J. Bact 68:131
    [Google Scholar]
  6. Davidson J. N., Smellie R. M. S. 1952; Phosphorus compounds in the cell. 2. The separation by ionophoresis on paper of the constituent nucleotides of ribonucleic acid. Biochem. J 52:594
    [Google Scholar]
  7. Davidson J. N., Frazer S. C., Hutchinson W. C. 1951; Phosphorus compounds in the cell. 1. Protein-bound phosphorus fractions studied with the aid of radioactive phosphorus. Biochem. J 49:313
    [Google Scholar]
  8. Delwiche E. A. 1950; A biotin function in succinic acid decarboxylation by Propionibacterium pentosaceum . J. Bact 59:439
    [Google Scholar]
  9. Estes J. M., Ravel J. M., Shive W. 1956; A role of biotin in the interaction of ornithine and carbamyl phosphate. J. Amer. chem. Soc 78:6410
    [Google Scholar]
  10. Katsuki H. 1959a; Studies on the metabolic function of biotin. III. Accumulation of α-keto acids in biotin-deficient cultures of Piricularia oryzae . J. Biochem., Tokyo 46:621
    [Google Scholar]
  11. Katsuki H. 1959b; Studies on the metabolic function of biotin. IV. Function of biotin in α-keto acid oxidation. J. Biochem., Tokyo 46:979
    [Google Scholar]
  12. Lardy H. A., Potter R. L., Elvehjem C. A. 1947; The role of biotin in bicarbonate utilization by bacteria. J. biol. Chem 169:451
    [Google Scholar]
  13. Lichstein H. C. 1955; The presence of bound biotin in purified preparations of oxal-acetic carboxylase. J. biol. Chem 212:217
    [Google Scholar]
  14. Lichstein H. C., Christman J. R. 1948; The role of biotin and adenylic acid in amino acid deaminases. J. biol. Chem 175:649
    [Google Scholar]
  15. Lichstein H. C., Umbreit W. W. 1947; Biotin activation of certain deaminases. J. biol. Chem 170:423
    [Google Scholar]
  16. Lones D. P., Rainbow C., Woodward J. D. 1958; A diazotizable amine produced by yeast; its chemical nature and factors affecting its accumulation. J. gen. Microbiol 19:46
    [Google Scholar]
  17. Markham R. 1942; A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J 36:790
    [Google Scholar]
  18. Miller L., Houghton J. A. 1945; The micro-Kjeldahl determination of the nitrogen content of amino acids and proteins. J. biol. Chem 159:373
    [Google Scholar]
  19. Mitchell P., Moyle J. 1951; The glycerophosphoprotein complex envelope of Micrococcus pyogenes . J. gen. Microbiol 5:981
    [Google Scholar]
  20. Moat A. G., Wilkins C. N., Friedman H. 1956; A role for biotin in purine biosynthesis. J. biol. Chem 223:985
    [Google Scholar]
  21. Nadkarni G. B., Sreenivasan A. 1957; The metabolism of serine in biotin deficiency. Proc. Ind. Acad. Sci 46B:229
    [Google Scholar]
  22. Ogur M., Rosen G. 1950; The nucleic acids of plant tissues. I. The extraction and estimation of deoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem 25:262
    [Google Scholar]
  23. Ploeser J. McT., Loring H. S. 1949; The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides. J. biol. Chem 178:431
    [Google Scholar]
  24. Ravel J. M., Grona M. L., Humphreys J. S., Shive W. 1959; Properties and biotin content of purified preparations of the ornithine-citrulline enzyme of Streptococcus lactis . J. biol. Chem 234:1452
    [Google Scholar]
  25. Rose A. H. 1960a; Excretion of nicotinic acid and nicotinic acid adenine dinucleotide by biotin-deficient yeast. Nature; Lond: 186139
    [Google Scholar]
  26. Rose A. H. 1960b; Excretion of nicotinic acid by biotin-deficient Saccharomyces cerevisiae . J. gen. Microbiol 23:143
    [Google Scholar]
  27. Rose A. H., Nickerson W. J. 1956; Nicotinic acid secretion by biotin-dependent yeasts. J. Bact 72:324
    [Google Scholar]
  28. Rossi C. S., Rossi F., Rossi C. R. 1957; Sintesi dell’ossalacetato e utilizzazione del piruvato nell’avitaminosi H. Lo Sperimentale 107:243
    [Google Scholar]
  29. Schmidt G., Thannhauser S. J. 1945; A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. biol. Chem 161:83
    [Google Scholar]
  30. Schneider W. 1945; Phosphorus compounds in animal tissues. I. Extraction and estimation of deoxypentose nucleic acid and pentose nucleic acid. J. biol. Chem 161:293
    [Google Scholar]
  31. Shive W., Rodgers L. L. 1947; Involvement of biotin in the biosynthesis of oxal-acetic and α-ketoglutaric acids. J. biol. Chem 169:453
    [Google Scholar]
  32. Skoda J., Sorm F. 1958; Accumulation of nucleic acid metabolites in Escherichia coli exposed to the action of 6-azauracil. Biochim. Biophys. acta 28:659
    [Google Scholar]
  33. Strauss R. R., Moat A. G. 1958; A role for biotin in yeast glycolysis. J. biol. Chem 233:765
    [Google Scholar]
  34. Sund R. F., Ravel J. M., Shive W. 1958; Ornithine-citrulline enzyme synthesis in biotin-deficient cells of Streptococcus lactis . J. biol. Chem 231:807
    [Google Scholar]
  35. Volkin E., Carter C. F. 1951; The preparation and properties of mammalian ribonucleic acids. J. Amer. chem. Soc 73:1516
    [Google Scholar]
  36. Wright L. D., Cresson E. L., Skeggs H. R., Wood T. R., Peck R. L., Wolf D. E., Folkers K. 1952; Isolation of crystalline biocytin from yeast extract. J. Amer. chem. Soc 74:1996
    [Google Scholar]
  37. Wyatt G. R. 1951; The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem. J 48:584
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-24-1-69
Loading
/content/journal/micro/10.1099/00221287-24-1-69
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error