1887

Abstract

To follow and model evolution of a microbial population in the chemostat, parameters are needed that give an indication of the absolute extent of evolution at a high resolution of time. In this study the evolution of the maximum specific growth rate (μ) and the residual glucose concentration was followed for populations of K-12 under glucose-limited conditions at dilution rates of 01 h, 03 h and 053 h during 500–700 h in continuous culture. Whereas μ improved only during the initial 150 h, the residual glucose concentration decreased constantly during 500 h of cultivation and therefore served as a convenient parameter to monitor the evolution of a population at a high time resolution with respect to its affinity for the growth-limiting substrate. The evolution of residual glucose concentrations was reproducible in independent chemostats with a population size of 10 cells, whereas no reproducibility was found in chemostats containing 10 cells. A model based on Monod kinetics assuming successive take-overs of mutants with improved kinetic parameters (primarily ) was able to simulate the experimentally observed evolution of residual glucose concentrations. Similar values for the increase in glucose affinity of mutant phenotypes ( 0 ) and similar mutation rates per cell per generation leading to these mutant phenotypes (1–5×10) were estimated for all dilution rates. The model predicts a maximum rate of evolution at a dilution rate slightly below μ/2. With increasing and decreasing dilution rates the evolution slows down, which also explains why in special cases a selection-driven evolution can exhibit apparent clock-like behaviour. The glucose affinity for WT cells was dependent on the dilution rate with highest values at dilution rates around μ/2. Below 03 h poorer affinity was mainly due to the effects of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2889
2002-09-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482889a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2889&mimeType=html&fmt=ahah

References

  1. Atwood, K. C., Schneider, L. K. & Ryan, F. J. ( 1951; ). Selective mechanisms in bacteria. Cold Spring Harbor Symp Quant Biol 16, 345-355.[CrossRef]
    [Google Scholar]
  2. Ayala, F. J. ( 2000; ). Neutralism and selectionism: the molecular clock. Gene 261, 27-33.[CrossRef]
    [Google Scholar]
  3. Death, A. & Ferenci, T. ( 1994; ). Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176, 5101-5107.
    [Google Scholar]
  4. Dykhuizen, D. E. ( 1990; ). Experimental studies of natural selection in bacteria. Annu Rev Ecol Syst 21, 373-398.[CrossRef]
    [Google Scholar]
  5. Dykhuizen, D. & Hartl, D. ( 1981; ). Evolution of competitive ability in Escherichia coli. Evolution 35, 581-594.[CrossRef]
    [Google Scholar]
  6. Dykhuizen, D. E. & Hartl, D. L. ( 1983; ). Selection in chemostats. Microbiol Rev 47, 150-168.
    [Google Scholar]
  7. Eisenthal, R. & Cornish-Bowden, A. ( 1974; ). The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139, 715-720.
    [Google Scholar]
  8. Ferenci, T. ( 1996; ). Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev 18, 301-317.[CrossRef]
    [Google Scholar]
  9. Ferenci, T. ( 1999; ). ‘Growth of bacterial cultures’ 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbiol 150, 431-438.[CrossRef]
    [Google Scholar]
  10. Finkel, S. E., Zinser, E., Gupta, S. & Kolter, R. ( 1998; ). Life and death in stationary phase. In Molecular Microbiology , pp. 3-16. Edited by S. J. W. Busby, M. C. Thomas & N. L. Brown. Berlin:Springer.
  11. Hartl, D. & Dykhuizen, D. ( 1979; ). A selectively driven molecular clock. Nature 281, 230-231.[CrossRef]
    [Google Scholar]
  12. Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  13. Kovár̆ová, K. (1996). Growth kinetics of Escherichia coli: effect of temperature, mixed substrate utilization, and adaptation to carbon-limited growth. PhD thesis, ETH Zürich.
  14. Kovár̆ová, K., Zehnder, A. J. B. & Egli, T. ( 1996; ). Temperature dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture. J Bacteriol 178, 4530-4539.
    [Google Scholar]
  15. Kovár̆ová-Kovar, K. & Egli, T. ( 1998; ). Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62, 646-666.
    [Google Scholar]
  16. Kubitschek, H. E. (1974). Operation of selection pressure on microbial populations. In Evolution in the Microbial World (Society for General Microbiology Symposium no. 24), pp. 105–130. Edited by M. J. Carlile and J. J. Skehel. Cambridge: Cambridge University Press.
  17. Kubitschek, H. E. & Bendigkeit, H. E. ( 1964; ). Mutation in continuous cultures. I. Dependence of mutational response upon growth-limiting factors. Mutation Res 1, 113-120.[CrossRef]
    [Google Scholar]
  18. Kurlandzka, A., Rosenzweig, R. F. & Adams, J. ( 1991; ). Identification of adaptive changes in an evolving population of Escherichia coli: the role of changes with regulatory and highly pleiotropic effects. Mol Biol Evol 8, 261-281.
    [Google Scholar]
  19. Lange, R. & Hengge-Aronis, R. ( 1994; ). The cellular concentration of the σs subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8, 1600-1612.[CrossRef]
    [Google Scholar]
  20. Merrel, D. J. (1981). Ecological Genetics. Minneapolis: University of Minnesota Press.
  21. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  22. Monod, J. (1942). Recherche sur la Croissance des Cultures Bactériennes. Paris: Hermann et Cie.
  23. Notley, L. & Ferenci, T. ( 1996; ). Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli. J Bacteriol 178, 1465-1468.
    [Google Scholar]
  24. Notley-McRobb, L. & Ferenci, T. ( 1999a; ). Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol 1, 33-43.[CrossRef]
    [Google Scholar]
  25. Notley-McRobb, L. & Ferenci, T. ( 1999b; ). The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1, 45-52.[CrossRef]
    [Google Scholar]
  26. Notley-McRobb, L. & Ferenci, T. ( 2000; ). Experimental analysis of molecular events during mutational periodic selections in bacterial evolution. Genetics 156, 1493-1501.
    [Google Scholar]
  27. Novick, A. & Szilard, L. ( 1950; ). Experiments with the chemostat on spontaneous mutations of bacteria. Genetics 36, 708-719.
    [Google Scholar]
  28. Pirt, S. J. ( 1965; ). The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163, 224-231.[CrossRef]
    [Google Scholar]
  29. Powell, E. O. ( 1958; ). Criteria for growth of contaminants and mutants in continuous culture. J Gen Microbiol 18, 259-268.[CrossRef]
    [Google Scholar]
  30. Powell, E. O. ( 1967; ). The growth rate of micro-organisms as function of substrate concentration. In Microbial Physiology and Continuous Culture , pp. 34-55. Edited by C. G. T. Evans, R. E. Strange & D. W. Tempest. London:HMSO.
  31. Reichert, P. ( 1994; ). AQUASIM – a tool for simulation and data analysis of aquatic systems. Water Sci Technol 30, 21-30.
    [Google Scholar]
  32. Rosenzweig, R., Sharp, R., Treves, D. & Adams, J. ( 1994; ). Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137, 903-917.
    [Google Scholar]
  33. Sak, B. D., Eisenstark, A. & Touati, D. ( 1989; ). Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci USA 86, 3271-3275.[CrossRef]
    [Google Scholar]
  34. Savva, D. ( 1982; ). Spontaneous mutation rates in continuous cultures: the effect of some environmental factors. Microbios 33, 81-92.
    [Google Scholar]
  35. Senn, H., Lendenmann, U., Snozzi, M., Hamer, G. & Egli, T. ( 1994; ). The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. Biochim Biophys Acta 1201, 424-436.[CrossRef]
    [Google Scholar]
  36. Shehata, T. E. & Marr, A. G. ( 1971; ). Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol 107, 210-216.
    [Google Scholar]
  37. Smith, K. C. ( 1992; ). Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res 277, 139-162.[CrossRef]
    [Google Scholar]
  38. Treves, D., Manning, S. & Adams, J. ( 1998; ). Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15, 789-797.[CrossRef]
    [Google Scholar]
  39. Veldkamp, H. & Jannasch, H. W. ( 1972; ). Mixed culture studies with the chemostat. J Appl Chem Biotechnol 22, 105-123.[CrossRef]
    [Google Scholar]
  40. Volkert, M. R., Hajec, L. I., Matijasevic, Z., Fang, F. C. & Prince, R. ( 1994; ). Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS (katF) gene. J Bacteriol 176, 7638-7645.
    [Google Scholar]
  41. Wahl, L. M. & Krakauer, D. C. ( 2000; ). Models of experimental evolution: the role of genetic chance and selective necessity. Genetics 156, 1437-1448.
    [Google Scholar]
  42. Westerhoff, H. V., Lolkema, J. S., Otto, R. & Hellingwerf, K. J. ( 1982; ). Thermodynamics of growth, non-equilibrium thermodynamics of bacterial growth, the phenomenological and the mosaic approach. Biochim Biophys Acta 683, 181-220.[CrossRef]
    [Google Scholar]
  43. Wick, L. M., Quadroni, M. & Egli, T. ( 2001; ). Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 3, 588-599.[CrossRef]
    [Google Scholar]
  44. Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A. & Kolter, R. ( 1993; ). Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259, 1757-1760.[CrossRef]
    [Google Scholar]
  45. Zuckerkandl, E. & Pauling, L. ( 1965; ). Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins , pp. 97-166. Edited by V. Bryson & H. J. Vogel. New York:Academic Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2889
Loading
/content/journal/micro/10.1099/00221287-148-9-2889
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error