1887

Abstract

The bacterium , a swine pathogen, utilizes ferrichrome as an iron source. This study details the molecular cloning and sequencing of the genes involved in the uptake of this hydroxamate siderophore. Four ferric hydroxamate uptake () genes, , , and , were identified in a single operon, and these were found to encode proteins homologous to proteins of the systems of several bacteria, including . The gene encodes the 77 kDa outer-membrane protein (OMP) FhuA, the receptor for ferrichrome. FhuD is the 356 kDa periplasmic protein responsible for the translocation of ferric hydroxamate from the outer to the inner membrane. FhuC (285 kDa) and FhuB (694 kDa) are cytoplasmic-membrane-associated proteins that are components of an ABC transporter which internalizes the ferric hydroxamate. Reference strains of that represented serotypes 1 to 12 of this organism all tested positive for the four genes. When FhuA was affinity-tagged with hexahistidine at its amino terminus and expressed in an host, the recombinant protein reacted with an mAb against FhuA, as well as with a polyclonal pig serum raised against an infection. Hence, the authors conclude that is expressed by . Three-dimensional modelling of the OMP FhuA was achieved by threading it to the X-ray crystallographic structure of the homologous protein in . FhuA from was found to have the same overall fold as its homologue, i.e. it possesses an N-terminal cork domain followed by a C-terminal β-barrel domain and displays 11 extracellular loops and 10 periplasmic turns.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2869
2002-09-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482869a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2869&mimeType=html&fmt=ahah

References

  1. Arnow L. E. 1937; Colorimetric determination of the compounds 3,4 dihydroxyphenylalanine-tyrosine mixture. J Biol Chem118:531–537
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1998; Current Protocols in Molecular Biology New York: Wiley Interscience;
    [Google Scholar]
  3. Bates P. A., Sternberg M. J. E. 1999; Model building by comparison at CASP3: using expert knowledge and computer automation. Proteins37:S347–54
    [Google Scholar]
  4. Bélanger M., Bégin C., Jacques M. 1995; Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin. Infect Immun63:656–662
    [Google Scholar]
  5. Braun V. 1995; Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB–ExbB–ExbD-dependent receptor proteins. FEMS Microbiol Rev16:295–307[CrossRef]
    [Google Scholar]
  6. Braun V. 2001; Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol291:67–79[CrossRef]
    [Google Scholar]
  7. Braun V., Günter K., Hantke K. 1991; Transport of iron across the outer membrane. Biol Met4:14–22[CrossRef]
    [Google Scholar]
  8. Braun V., Hantke K., Köster W. 1998; Bacterial iron transport: mechanisms, genetics and regulation. In Metal Ions in Biological Systems pp67–145 New York: Marcel Dekker;
    [Google Scholar]
  9. Burkhardt R., Braun V. 1987; Nucleotide sequence of the fhuC and fhuD genes involved in iron (III) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins. Mol Gen Genet209:49–55[CrossRef]
    [Google Scholar]
  10. Coulton J. W., Mason P., DuBow M. S. 1983; Molecular cloning of the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol156:1315–1321
    [Google Scholar]
  11. Coulton J. W., Mason P., Allatt D. D. 1987; fhuC and fhuD genes for iron (III)-ferrichrome transport into Escherichia coli K-12. J Bacteriol169:3844–3849
    [Google Scholar]
  12. Csaky T. Z. 1948; On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand2:450–454[CrossRef]
    [Google Scholar]
  13. Deane C. M., Blundell T. L. 2001; CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci10:599–612[CrossRef]
    [Google Scholar]
  14. Deneer H. G., Potter A. A. 1989; Effect of iron restriction on the outer membrane proteins of Actinobacillus ( Haemophilus ) pleuropneumoniae . Infect Immun57:798–804
    [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  16. Diarra M. S., Dolence J. A., Dolence E. K., Darwish I., Miller M. J., Malouin F., Jacques M. 1996; Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores. Appl Environ Microbiol62:853–959
    [Google Scholar]
  17. Doree S. M., Mulks M. H. 2001; Identification of an Actinobacillus pleuropneumoniae consensus promoter structure. J Bacteriol183:1983–1989[CrossRef]
    [Google Scholar]
  18. Fecker L., Braun V. 1984; Cloning and expression of the fhu genes involved in iron (III) hydroxamate uptake in Escherichia coli . J Bacteriol121:497–503
    [Google Scholar]
  19. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W. 1998a; Siderophore-mediated iron transport: crystal structure of the FhuA with bound lipopolysaccharide. Science282:2215–2220[CrossRef]
    [Google Scholar]
  20. Ferguson A. D., Breed J., Diederichs K., Welte W., Coulton J. W. 1998b; An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Protein Sci7:1636–1638[CrossRef]
    [Google Scholar]
  21. Ferguson A. D., Welte W., Hofmann E., Linder B., Holst O., Coulton J. W., Diederichs K. 2000; A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure (Camb)8:585–592[CrossRef]
    [Google Scholar]
  22. Ferguson A. D., Coulton J. W., Diederichs K., Welte W. 2001a; The ferric hydroxamate uptake receptor FhuA and related TonB-dependent transporters in the outer membrane of gram-negative bacteria. In Handbook of Metalloproteins pp834–849 Chichester: Wiley;
    [Google Scholar]
  23. Ferguson A. D., Ködding J., Walker G., Bös C., Coulton J. W., Diederichs K., Braun V., Welte W. 2001b; Active transport of an antibiotic rifamycin derivative by the outer membrane protein FhuA. Structure (Camb)9:707–716[CrossRef]
    [Google Scholar]
  24. Galindo M. A., Day W. A., Raphael B. H., Joens L. A. 2001; Cloning and characterization of a Campylobacter jejuni iron-uptake operon. Curr Microbiol42:139–143
    [Google Scholar]
  25. Gerlach G. F., Klashinsky S., Anderson C., Potter A. A., Willson P. J. 1992a; Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun60:3253–3261
    [Google Scholar]
  26. Gerlach G. F., Anderson C., Potter A. A., Klashinsky S., Willson P. J. 1992b; Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae . Infect Immun60:892–898
    [Google Scholar]
  27. Gonzalez G. C., Yu R.-h., Rosteck P. R. Jr, Schryvers A. B. 1995; Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes. Microbiology141:2405–2416[CrossRef]
    [Google Scholar]
  28. Günter K., Braun V. 1990; In vivo evidence for FhuA outer membrane receptor interaction with TonB inner membrane protein of Escherichia coli . FEBS Lett274:85–88[CrossRef]
    [Google Scholar]
  29. Harlow E., Lane D. 1999; Using Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  30. Jacques M., Rioux S., Paradis S.-E., Bégin C., Gottschalk M. 1996; Identification of two core types in Actinobacillus pleuropneumoniae representing serotypes 1 to 12. Can J Microbiol42:855–858[CrossRef]
    [Google Scholar]
  31. Köster W., Braun V. 1986; Iron hydroxamate transport of Escherichia coli : nucleotide sequence of the fhu B gene and identification of the protein. Mol Gen Genet204:435–442[CrossRef]
    [Google Scholar]
  32. Köster W., Braun V. 1989; Iron-hydroxamate transport into Escherichia coli K12: localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane. Mol Gen Genet217:233–239[CrossRef]
    [Google Scholar]
  33. Kraulis P. 1991; molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr24:946–950[CrossRef]
    [Google Scholar]
  34. Linton K. J., Higgins C. F. 1998; The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol28:5–13
    [Google Scholar]
  35. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D. 1998; Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell95:771–778[CrossRef]
    [Google Scholar]
  36. Mademidis A., Killmann H., Kraas W., Flechsler I., Jung G., Braun V. 1997; ATP-dependent ferric-hydroxamate transport system in Escherichia coli : periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol Microbiol26:1109–1123[CrossRef]
    [Google Scholar]
  37. Manoil C., Beckwith J. 1985; TnphoA : a transposon probe for protein export signals. Proc Natl Acad Sci USA82:8129–8133[CrossRef]
    [Google Scholar]
  38. Martinez J. L., Delgado-Iribarren A., Baquero F. 1990; Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev75:45–56[CrossRef]
    [Google Scholar]
  39. Mickelson P. A., Blackman E., Sparling P. F. 1982; Ability of Neisseria gonorrhoeae , Neisseria meningitidis and commensal Neisseria species to obtain iron from lactoferrin. Infect Immun35:915–920
    [Google Scholar]
  40. Mintz K. P., Fives-Taylor P. M. 1999; Identification of genes coding for exported proteins of Actinobacillus actinomycetemcomitans . Infect Immun67:6217–6220
    [Google Scholar]
  41. Moeck G. S., Coulton J. W. 1998; TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol28:675–681
    [Google Scholar]
  42. Moeck G. S., Ratcliffe M. J. H., Coulton J. W. 1995; Topological analysis of the Escherichia coli ferrichrome-iron receptor by using monoclonal antibodies. J Bacteriol177:6118–6125
    [Google Scholar]
  43. Moeck G. S., Tawa P., Xiang H., Ismail A. A., Turnbull J. L., Coulton J. W. 1996; Ligand-induced conformational change in the ferrichrome-iron receptor of Escherichia coli K-12. Mol Microbiol22:459–471[CrossRef]
    [Google Scholar]
  44. Moeck G. S., Coulton J. W., Postle K. 1997; Cell envelope signaling in Escherichia coli . Ligand binding to the ferrichrome-iron receptor FhuA promotes interaction with the energy-transducing protein TonB. J Biol Chem272:28391–28397[CrossRef]
    [Google Scholar]
  45. Nakai K., Kanehisa M. 1991; Expert system for predicting protein localization sites in gram-negative bacteria. Proteins11:95–110[CrossRef]
    [Google Scholar]
  46. Neilands J. B. 1995; Siderophores: structure and function of microbial iron transport compounds. J Biol Chem270:26723–26726[CrossRef]
    [Google Scholar]
  47. Niven D. F., Donga J., Archibald F. S. 1989; Response of Haemophilus pleuropneumoniae to iron restriction; changes in the outer membrane protein profile and the removal of iron from porcine transferrin. Mol Microbiol3:1083–1089[CrossRef]
    [Google Scholar]
  48. Parkhill J., Achtman M., James K. D.. 25 other authors 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature404:502–506[CrossRef]
    [Google Scholar]
  49. Pearce B. J., Yin Y. B., Masure H. R. 1993; Genetic identification of exported proteins in Streptococcus pneumoniae . Mol Microbiol9:1037–1050[CrossRef]
    [Google Scholar]
  50. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156[CrossRef]
    [Google Scholar]
  51. Pohl S., Bertschinger H. U., Frederiksen W., Mannheim W. 1983; Transfer of Haemophilus pleuropneumoniae and the Pasteurella haemolytica- like organism causing porcine necrotic pleuropneumonia to the genus Actinobacillus ( Actinobacillus pleuropneumoniae comb. nov.) on the basis of phenotypic and deoxyribonucleic acid relatedness. Int J Syst Bacteriol33:510–514[CrossRef]
    [Google Scholar]
  52. Postle K. 1993; TonB protein and energy transduction between membranes. J Bioenerg Biomembr25:591–601
    [Google Scholar]
  53. Schaller A., Kuhn R., Kuhnert P., Nicolet J., Anderson T. J., MacInnes J. I., Segers R. P. A. M., Frey J. 1999; Characterization of apxIVA , a new RTX determinant of Actinobacillus pleuropneumoniae . Microbiology145:2105–2116[CrossRef]
    [Google Scholar]
  54. Sirois M., St-Arneault A., Provencher J., Perreault N., Gagnon L. A. 2001; Identification of Actinobacillus pleuropneumoniae DNA sequences encoding exported proteins using PhoA. In Abstracts of the 101st General Meeting of the American Society for Microbiology 2001, abstract B-468 p146 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  55. Soltes G. A., MacInnes J. I. 1994; Regulation of gene expression by the HlyX protein of Actinobacillus pleuropneumoniae . Microbiology140:839–845[CrossRef]
    [Google Scholar]
  56. Tascón R. I., Vàsquez-Boland J. A., Gutierez-Martin C. B., Rodriguez-Barbosa J. I., Rodriguez-Ferri E. F. 1996; Virulence factors of the swine pathogen Actinobacillus pleuropneumoniae . Microbiologia12:171–184
    [Google Scholar]
  57. Tonpitak W., Thiede S., Oswald W., Baltes N., Gerlach G. F. 2000; Actinobacillus pleuropneumoniae iron transport: a set of exbBD genes is transcriptionally linked to the tbpB gene and required for utilization of transferrin-bound iron. Infect Immun68:1164–1170[CrossRef]
    [Google Scholar]
  58. Vézina G., Sirois M., Clairoux N., Boissinot M. 1997; Cloning and characterization of the groE locus from Actinobacillus pleuropneumoniae . FEMS Microbiol Lett147:11–16[CrossRef]
    [Google Scholar]
  59. West S. E., Sparling P. F. 1985; Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun47:388–394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2869
Loading
/content/journal/micro/10.1099/00221287-148-9-2869
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error