1887

Abstract

Components of the ATP-dependent Clp protease complex are found in a wide range of prokaryotic cells and they are often expressed as part of the cellular stress response. To investigate the physiological role of the proteolytic subunit, ClpP, in serovar Typhimurium () an in-frame deletion of the gene was constructed. Growth experiments revealed that is important for the ability of to grow under various stressful conditions, such as low pH, elevated temperature and high salt concentrations. Since the stationary-phase sigma factor, RpoS, is a target of the Clp proteolytic complex, the effect of the deletion in the absence of RpoS was examined; it was observed that growth of the mutant is affected in both an RpoS-dependent and an RpoS-independent manner. Analysis of the degradation of abnormal puromycyl-containing polypeptides showed that ClpP participates in the proteolysis of such proteins in . These findings prompted an investigation of the growth of an mutant under various stress conditions. The growth of this mutant was affected by heat, salt and low pH, although not to the same extent as observed for the mutant. The results of this study indicate that the mutant is generally more sensitive to environmental stress than the mutant and it is proposed that this is due to a reduced ability to degrade misfolded proteins generated under these conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2727
2002-09-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482727a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2727&mimeType=html&fmt=ahah

References

  1. Chung C. H., Goldberg A. L. 1981; The product of the lon ( capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci USA 78:4931–4935 [CrossRef]
    [Google Scholar]
  2. De Mot R., Nagy I., Walz J., Baumeister W. 1999; Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol 7:88–92 [CrossRef]
    [Google Scholar]
  3. Downs D., Waxman L., Goldberg A. L., Roth J. 1986; Isolation and characterization of lon mutants in Salmonella typhimurium . J Bacteriol 165:193–197
    [Google Scholar]
  4. Enomoto M., Stocker B. A. 1974; Transduction by phage P1kc in Salmonella typhimurium . Virology 60:503–514 [CrossRef]
    [Google Scholar]
  5. Foster J. W., Spector M. P. 1995; How Salmonella survive against the odds. Annu Rev Microbiol 49:145–174 [CrossRef]
    [Google Scholar]
  6. Frees D., Ingmer H. 1999; ClpP participates in the degradation of misfolded protein in Lactococcus lactis . Mol Microbiol 31:79–87 [CrossRef]
    [Google Scholar]
  7. Gaillot O., Pellegrini E., Bregenholt S., Nair S., Berche P. 2000; The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes . Mol Microbiol 35:1286–1294
    [Google Scholar]
  8. Galan J. E. 1996; Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20:263–271 [CrossRef]
    [Google Scholar]
  9. Goff S. A., Goldberg A. L. 1985; Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41:587–595 [CrossRef]
    [Google Scholar]
  10. Goldberg A. L., Moerschell R. P., Chung C. H., Maurizi M. R. 1994; ATP-dependent protease La ( lon) from Escherichia coli . Methods Enzymol 244:350–375
    [Google Scholar]
  11. Gottesman S. 1996; Proteases and their targets in Escherichia coli . Annu Rev Genet 30:465–506 [CrossRef]
    [Google Scholar]
  12. Hanahan D. 1985; Techniques for transformation of Escherichia coli . In DNA Cloning: a Practical Approach pp 109–135 Edited by Glover D. M. Oxford, UK: IRL Press;
    [Google Scholar]
  13. Hengge-Aronis R. 1996; Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli . Mol Microbiol 21:887–893 [CrossRef]
    [Google Scholar]
  14. Hengge-Aronis R. 2000; The general stress response in Escherichia coli . In Bacterial Stress Responses pp 161–178 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403 [CrossRef]
    [Google Scholar]
  16. Hormaeche C. E. 1979; Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37:311–318
    [Google Scholar]
  17. Huang H. C., Sherman M. Y., Kandror O., Goldberg A. L. 2001; The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli . J Biol Chem 276:3920–3928 [CrossRef]
    [Google Scholar]
  18. Ibanez-Ruiz M., Robbe-Saule V., Hermant D., Labrude S., Norel F. 2000; Identification of RpoS (σS)-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182:5749–5756 [CrossRef]
    [Google Scholar]
  19. Kandror O., Sherman M., Goldberg A. 1999; Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL. J Biol Chem 274:37743–37749 [CrossRef]
    [Google Scholar]
  20. Kessel M., Maurizi M. R., Kim B., Kocsis E., Trus B. L., Singh S. K., Steven A. C. 1995; Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26S proteasomes. J Mol Biol 250:587–594 [CrossRef]
    [Google Scholar]
  21. Kruger E., Witt E., Ohlmeier S., Hanschke R., Hecker M. 2000; The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182:3259–3265 [CrossRef]
    [Google Scholar]
  22. Lange R., Hengge-Aronis R. 1994; The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612 [CrossRef]
    [Google Scholar]
  23. Laskowska E., Kuczynska-Wisnik D., Skorko-Glonek J., Taylor A. 1996; Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro . Mol Microbiol 22:555–571 [CrossRef]
    [Google Scholar]
  24. Lee I. S., Lin J., Hall H. K., Bearson B., Foster J. W. 1995; The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium . Mol Microbiol 17:155–167 [CrossRef]
    [Google Scholar]
  25. Loewen P. C., Hengge-Aronis R. 1994; The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol 48:53–80 [CrossRef]
    [Google Scholar]
  26. Maloy S. R., Stewart V. J., Taylor R. K. 1996 Genetic Analysis of Pathogenic Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Maurizi M. R., Trisler P., Gottesman S. 1985; Insertional mutagenesis of the lon gene in Escherichia coli : lon is dispensable. J Bacteriol 164:1124–1135
    [Google Scholar]
  28. Maurizi M. R., Clark W. P., Kim S. H., Gottesman S. 1990a; ClpP represents a unique family of serine proteases. J Biol Chem 265:12546–12552
    [Google Scholar]
  29. Maurizi M. R., Clark W. P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B., Gottesman S. 1990b; Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli . J Biol Chem 265:12536–12545
    [Google Scholar]
  30. Mhammedi-Alaoui A., Pato M., Gama M. J., Toussaint A. 1994; A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol Microbiol 11:1109–1116 [CrossRef]
    [Google Scholar]
  31. Miller C. G. others 1996; Protein degradation and proteolytic modification. In Esherichia coli and Salmonella: Cellular and Molecular Biology pp 938–954 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Msadek T., Dartois V., Kunst F., Herbaud M. L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914 [CrossRef]
    [Google Scholar]
  34. O’Callaghan D., Charbit A. 1990; High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol Gen Genet 223:156–158 [CrossRef]
    [Google Scholar]
  35. O’Neal C. R., Gabriel W. M., Turk A. K., Libby S. J., Fang F. C., Spector M. P. 1994; RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium . J Bacteriol 176:4610–4616
    [Google Scholar]
  36. Phillips G. J. 1999; New cloning vectors with temperature-sensitive replication. Plasmid 41:78–81 [CrossRef]
    [Google Scholar]
  37. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458 [CrossRef]
    [Google Scholar]
  38. Raina S., Georgopoulos C. 1990; A new Escherichia coli heat shock gene, htrC , whose product is essential for viability only at high temperatures. J Bacteriol 172:3417–3426
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schultz J. E., Latter G. I., Matin A. 1988; Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli . J Bacteriol 170:3903–3909
    [Google Scholar]
  41. Schweder T., Lee K. H., Lomovskaya O., Matin A. 1996; Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. J Bacteriol 178:470–476
    [Google Scholar]
  42. Spector M. P., Aliabadi Z., Gonzalez T., Foster J. W. 1986; Global control in Salmonella typhimurium : two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins. J Bacteriol 168:420–424
    [Google Scholar]
  43. Tomoyasu T., Ohkishi T., Ukyo Y. 7 other authors 2002; The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium. J Bacteriol 184:645–653 [CrossRef]
    [Google Scholar]
  44. Wang J., Hartling J. A., Flanagan J. M. 1997; The structure of ClpP at 2·3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91:447–456 [CrossRef]
    [Google Scholar]
  45. Wang L., Elliott M., Elliott T. 1999; Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium . J Bacteriol 181:1211–1219
    [Google Scholar]
  46. Wawrzynow A., Wojtkowiak D., Marszalek J., Banecki B., Jonsen M., Graves B., Georgopoulos C., Zylicz M. 1995; The ClpX heat-shock protein of Escherichia coli , the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J 14:1867–1877
    [Google Scholar]
  47. Wawrzynow A., Banecki B., Zylicz M. 1996; The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21:895–899 [CrossRef]
    [Google Scholar]
  48. Webb C., Moreno M., Wilmes-Riesenberg M., Curtiss R.III, Foster J. W. 1999; Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium . Mol Microbiol 34:112–123 [CrossRef]
    [Google Scholar]
  49. Wickner S., Gottesman S., Skowyra D., Hoskins J., McKenney K., Maurizi M. R. 1994; A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91:12218–12222 [CrossRef]
    [Google Scholar]
  50. Yamamoto T., Sashinami H., Takaya A., Tomoyasu T., Matsui H., Kikuchi Y., Hanawa T., Kamiya S., Nakane A. 2001; Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69:3164–3174 [CrossRef]
    [Google Scholar]
  51. Zgurskaya H. I., Keyhan M., Matin A. 1997; The sigma S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis. Mol Microbiol 24:643–651 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-9-2727
Loading
/content/journal/micro/10.1099/00221287-148-9-2727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error