1887

Abstract

The cDNA (encoding ATP sulfurylase) was cloned by complementation of the corresponding mutation in . Sequence analysis showed high similarity between the deduced amino acid sequence of the Met3p and other fungal ATP sulfurylases. A mutant was made by targeted insertional mutagenesis, which had the expected auxotrophic phenotype, and reconstituted the mutant to Met. , the mutant had a substantial defect in melanin formation, significantly reduced growth rate, and greatly increased thermotolerance. In the murine inhalation infection model, the mutant was avirulent and was deficient in its ability to survive in mice. It is concluded that, in contrast to the yeast form of , in the sulfate-assimilation arm of the methionine biosynthetic pathway plays an important role , even in the presence of abundant exogenous methionine, and is critical for virulence, and indeed for survival,

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2617
2002-08-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482617a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2617&mimeType=html&fmt=ahah

References

  1. Alspaugh J. A., Perfect J. R., Heitman J. 1997; Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev11:3206–3217[CrossRef]
    [Google Scholar]
  2. Aoki Y., Yamamoto M., Hosseini-Mazinani S. M., Koshikawa N., Sugimoto K., Arisawa M. 1996; Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob Agents Chemother40:127–132
    [Google Scholar]
  3. Boguslawski G., Stetler D. A. 1979; Aspects of physiology of Histoplasma capsulatum . Mycopathologia67:17–24[CrossRef]
    [Google Scholar]
  4. Care R. S., Trevethick J., Binley K. M., Sudbery P. E. 1999; The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol34:792–798[CrossRef]
    [Google Scholar]
  5. Chang Y. C., Kwon-Chung K. J. 1994; Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol14:4912–4919
    [Google Scholar]
  6. Cox G. M., Mukherjee J., Cole G. T., Casadevall A., Perfect J. R. 2000; Urease as a virulence factor in experimental cryptococcosis. Infect Immun68:443–448[CrossRef]
    [Google Scholar]
  7. Cox G. M., McDade H. C., Chen S. C.. 8 other authors 2001; Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans . Mol Microbiol39:166–175[CrossRef]
    [Google Scholar]
  8. Crispens C. G. 1975; Section IV. Blood. In Handbook of the Laboratory Mouse pp93–123 Springfield, IL: Charles C. Thomas;
    [Google Scholar]
  9. D’Souza C. A., Alspaugh J. A., Yue C., Harashima T., Cox G. M., Perfect J. R., Heitman J. 2001; Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans . Mol Cell Biol21:3179–3191[CrossRef]
    [Google Scholar]
  10. Edman J. C. 1992; Isolation of telomerelike sequences from Cryptococcus neoformans and their use in high-efficiency transformation. Mol Cell Biol12:2777–2783
    [Google Scholar]
  11. Engler-Blum G., Meier M., Frank J., Muller G. A. 1993; Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem210:235–244[CrossRef]
    [Google Scholar]
  12. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast11:355–360[CrossRef]
    [Google Scholar]
  13. Goldstein A. L., McCusker J. H. 1999; Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae . Yeast15:1541–1553[CrossRef]
    [Google Scholar]
  14. Granger D. L., Perfect J. R., Durack D. T. 1985; Virulence of Cryptococcus neoformans . Regulation of capsule synthesis by carbon dioxide. J Clin Invest76:508–516[CrossRef]
    [Google Scholar]
  15. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene57:267–272[CrossRef]
    [Google Scholar]
  16. Jakubowski H., Goldman E. 1993; Methionine-mediated lethality in yeast cells at elevated temperature. J Bacteriol175:5469–5476
    [Google Scholar]
  17. Jones E. W., Fink G. R. 1982; Regulation of amino acid and nucleotide biosynthesis in yeast. In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression pp181–299 Edited by Strathern J. N., Jones E. W., Broach J. R.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  18. Kwon-Chung K. J., Rhodes J. C. 1986; Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans . Infect Immun51:218–223
    [Google Scholar]
  19. Kwon-Chung K. J., Bennet J. E. 1992; Medical Mycology pp397–446 Philadelphia, PA: Lea & Febiger;
    [Google Scholar]
  20. Kwon-Chung K. J., Polacheck I., Popkin T. J. 1982; Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol150:1414–1421
    [Google Scholar]
  21. Maresca B., Kobayashi G. S. 1989; Dimorphism in Histoplasma capsulatum : a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev53:186–209
    [Google Scholar]
  22. Marzluf G. A. 1997; Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol51:73–96[CrossRef]
    [Google Scholar]
  23. Medoff G., Painter A., Kobayashi G. S. 1987; Mycelial- to yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis . J Bacteriol169:4055–4060
    [Google Scholar]
  24. Paris S., Pringle J. R. 1983; Saccharomyces cerevisiae : heat and gluculase sensitivities of starved cells. Ann Microbiol134B:379–385
    [Google Scholar]
  25. Perfect J. R., Toffaletti D. L., Rude T. H. 1993; The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun61:4446–4451
    [Google Scholar]
  26. Plesset J., Ludwig J. R., Cox B. S., McLaughlin C. S. 1987; Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae . J Bacteriol169:779–784
    [Google Scholar]
  27. Rhodes J. C., Polacheck I., Kwon-Chung K. J. 1982; Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans . Infect Immun36:1175–1184
    [Google Scholar]
  28. Rose M. D., Winston F., Hieter P. 1990; Methods in Yeast Genetics: a Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sherman F., Fink G. R., Lawrence C. W. 1974; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Suvarna K., Bartiss A., Wong B. 2000; Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. Microbiology146:2705–2713
    [Google Scholar]
  32. Thomas D., Surdin-Kerjan Y. 1997; Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev61:503–532
    [Google Scholar]
  33. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. 1993; Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol175:1405–1411
    [Google Scholar]
  34. Walton E. F., Carter B. L. A., Pringle J. R. 1979; An enrichment method for temperature-sensitive and auxotrophic mutants of yeast. Mol Gen Genet171:111–114[CrossRef]
    [Google Scholar]
  35. Wang P., Cardenas M. E., Cox G. M., Perfect J. R., Heitman J. 2001; Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans . EMBO Rep2:511–518[CrossRef]
    [Google Scholar]
  36. Yue C., Cavallo L. M., Alspaugh J. A., Wang P., Cox G. M., Perfect J. R., Heitman J. 1999; The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans . Genetics153:1601–1615
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2617
Loading
/content/journal/micro/10.1099/00221287-148-8-2617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error