1887

Abstract

A plasmid designated pMEC2 which confers resistance to erythromycin, other macrolides, and lincomycin was detected in strain MAW843 isolated from human skin. Curing of this approximately 42 kb plasmid from the host organism resulted in erythromycin sensitivity of the strain. Introduction of pMEC2 into a different strain conferred erythromycin resistance upon this strain. Macrolide resistance in MAW843 was an inducible trait. Induction occurred at subinhibitory erythromycin concentrations of about 002–005 μg ml. Erythromycin and oleandomycin were inducers, while spiramycin and tylosin exerted no significant inducer properties. With heterologous expression experiments in , using hybrid plasmid constructs and deletion derivatives thereof, it was possible to narrow down the location of the plasmid-borne erythromycin-resistance determinant to a region of about 18 kb of pMEC2. Sequence analysis of the genetic determinant, designated , identified an ORF putatively encoding a 281-residue protein with similarity to 23S rRNA adenine -methyltransferases. was most related (about 52–54% identity) to erythromycin-resistance proteins found in high-G+C Gram-positive bacteria, including the (opportunistic) pathogenic corynebacteria , , and . This is believed to be the first report of a plasmid-borne, inducible antibiotic resistance in micrococci. The possible role of non-pathogenic, saprophytic micrococci bearing antibiotic-resistance genes in the spreading of these determinants is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2479
2002-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482479a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2479&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Choi S. S., Kim S. K., Oh T. G., Choi E. C. 1997; Role of mRNA termination in regulation of ermK . J Bacteriol 179:2065–2067
    [Google Scholar]
  3. Denoya D. D., Dubnau D. 1987; Site and substrate specificity of the ermC 23S rRNA methyltransferase. J Bacteriol 169:3857–3860
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  5. Dubnau D. 1984; Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. Crit Rev Biochem 16:103–132 [CrossRef]
    [Google Scholar]
  6. Eady E. A., Coates P., Ross J. I., Ratyal A. H., Cove J. H. 2000; Antibiotic resistance patterns of aerobic coryneforms and furazolidone-resistant Gram-positive cocci from the skin surface of the human axilla and fourth toe cleft. J Antimicrob Chemother 46:205–213 [CrossRef]
    [Google Scholar]
  7. Follettie M. T., Sinskey A. J. 1986; Recombinant DNA technology for Corynebacterium glutamicum . Food Technol 40:88–94
    [Google Scholar]
  8. Hodgson A. L., Krywult J., Radford A. J. 1990; Nucleotide sequence of the erythromycin resistance gene from the Corynebacterium plasmid pNG2. Nucleic Acids Res 18:1891 [CrossRef]
    [Google Scholar]
  9. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide and streptogramin type B antibiotics. J Bacteriol 150:804–814
    [Google Scholar]
  10. Horinouchi S., Byeon W.-H., Weisblum B. 1983; A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis . J Bacteriol 154:1252–1262
    [Google Scholar]
  11. Kelemen G. H., Zalacain M., Culebras E., Seno E. T., Cundliffe E. 1994; Transcriptional attenuation control of the tylosin-resistance gene in Streptomyces fradiae . Mol Microbiol 14:833–842 [CrossRef]
    [Google Scholar]
  12. Kloos W. E. 1969; Transformation of Micrococcus lysodeikticus by various members of the family Micrococcaceae. J Gen Microbiol 59:247–255 [CrossRef]
    [Google Scholar]
  13. Kloos W. E., Schultes L. M. 1969; Transformation in Micrococcus lysodeikticus . J Gen Microbiol 55:307–317 [CrossRef]
    [Google Scholar]
  14. Kocur M., Kloos W. E., Schleifer K. H. 1992; The genus Micrococcus . In The Prokaryotes. A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, Applications pp 1300–1311 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer Verlag;
    [Google Scholar]
  15. Liebl W., Schein B. 1990; Isolation of restriction deficient mutants of Corynebacterium glutamicum . In Dechema Biotechnology Conferences pp 323–327 Edited by Behrens D., Krämer P. Weinheim: VCH;
    [Google Scholar]
  16. Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K. H. 1989a; High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65:299–304 [CrossRef]
    [Google Scholar]
  17. Liebl W., Schleifer K. H., Sinskey A. J. 1989b; Secretion of heterologous proteins by Corynebacterium glutamicum . In Genetic Transformation and Expression pp 553–559 Edited by Butler L. O., Harwood C., Moseley B. E. B. Andover, UK: Intercept;
    [Google Scholar]
  18. Luna V. A., Coates P., Eady E. A., Cove J. H., Nguyen T. T. H., Roberts M. C. 1999; A variety of Gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother 44:19–25
    [Google Scholar]
  19. Mathis J. N., Kloos W. E. 1969; Isolation and characterization of Micrococcus plasmids. Curr Microbiol 10:339–344
    [Google Scholar]
  20. Mayford M., Weisblum B. 1990; The ermC leader peptide: amino acid alterations leading to differential efficiency of induction by macrolide-lincosamide-streptogramin B antibiotics. J Bacteriol 172:3772–3779
    [Google Scholar]
  21. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  22. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. 1999; Nomenclature for macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830
    [Google Scholar]
  23. Rosato A. E., Lee B. S., Nash K. A. 2001; Inducible macrolide resistance in Corynebacterium jeikeium . Antimicrob Agents Chemother 45:1982–1989 [CrossRef]
    [Google Scholar]
  24. Ross J. I., Eady E. A., Cove J. H., Cunliffe W. J., Baumberg S., Wootton J. C. 1990; Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4:1207–1214 [CrossRef]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Serwold-Davis T. M., Groman N. B. 1988; Identification of a methylase gene for erythromycin resistance within the sequence of a spontaneously deleting fragment of Corynebacterium diphtheriae plasmid pNG2. FEMS Microbiol Lett 46:7–14
    [Google Scholar]
  27. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  28. Sutcliffe J., Tait-Kamradt A., Wondrack L. 1996; Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 40:1817–1824
    [Google Scholar]
  29. Tauch A., Kassing F., Kalinowski J., Puhler A. 1995; The Corynebacterium xerosis composite transposon Tn 5432 consists of two identical insertion sequences, designated IS 1249 , flanking the erythromycin resistance gene ermCX . Plasmid 34:119–131 [CrossRef]
    [Google Scholar]
  30. Tauch A., Krieft S., Kalinowski J., Puhler A. 2000; The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263:1–11 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  32. Weisblum B. 1983; Inducible resistance to macrolides, lincosamides, and streptogramin type-B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression. In Gene Function in Prokaryotes pp 91–121 Edited by Beckwith J., Davies J., Gallant J. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Weisblum B. 1984; Inducible erythromycin resistance in bacteria. Brit Med Bull 40:47–53
    [Google Scholar]
  34. Xue Y., Zhao L., Liu H. W., Sherman D. H. 1998; A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae : architecture of metabolic diversity. Proc Natl Acad Sci USA 95:12111–12116 [CrossRef]
    [Google Scholar]
  35. Yoshihama M., Higashiro K., Rao E. A., Akedo M., Shanabruch W. G., Follettie M. T., Walker G. C., Sinskey A. J. 1985; Cloning vector system for Corynebacterium glutamicum . J Bacteriol 162:591–597
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-8-2479
Loading
/content/journal/micro/10.1099/00221287-148-8-2479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error