1887

Abstract

The operon is under control of the LysR-type transcriptional regulator GcvA. GcvA activates the operon in the presence of glycine and represses the operon in its absence. Repression by GcvA is dependent on a second regulatory protein, GcvR. Generally, LysR-type transcriptional regulators bind to specific small co-effector molecules which results in either their altered affinity for specific binding sites on the DNA or altered ability to bend the DNA, resulting in either activation or repression of their respective operons. This study shows that glycine, the co-activator for the operon, does not alter either GcvA’s ability to bind DNA nor its ability to bend DNA. Rather, glycine binds to GcvR, disrupting a GcvA/GcvR interaction required for repression and allowing GcvA activation of the operon. Amino acid changes in GcvR that reduce glycine binding result in a loss of glycine-mediated activation

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2203
2002-07-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482203a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2203&mimeType=html&fmt=ahah

References

  1. Berlyn, M. K. B., Low, K. B. & Rudd, K. E. (1996). Linkage map of Escherichia coli K-12. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1715–1902. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  2. Blakely, R. L. (1969). The Biochemistry of Folic acid and Related Pteridines. Amsterdam: Elsevier.
  3. Calvo, J. M. & Matthews, R. G. ( 1994; ). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58, 466-490.
    [Google Scholar]
  4. Colyer, T. E. & Kredich, N. M. ( 1996; ). In vitro characterization of constitutive CysB proteins from Salmonella typhimurium. Mol Microbiol 21, 247-256.[CrossRef]
    [Google Scholar]
  5. Fried, M. & Crothers, D. M. ( 1981; ). Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9, 6505-6525.[CrossRef]
    [Google Scholar]
  6. Gao, J. & Gussin, G. N. ( 1991; ). Mutations in TrpI binding site II that differentially affect activation of the trpBA promoter of Pseudomonas aeruginosa. EMBO J 10, 4137-4144.
    [Google Scholar]
  7. Garner, M. M. & Revzin, A. ( 1981; ). A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9, 3047-3060.[CrossRef]
    [Google Scholar]
  8. Ghrist, A. C. & Stauffer, G. V. ( 1995; ). Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 177, 4980-4984.
    [Google Scholar]
  9. Ghrist, A. C., Heil, G. & Stauffer, G. V. ( 2001; ). GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon. Microbiology 147, 2215-2221.
    [Google Scholar]
  10. Gralla, J. D. & Collado-Vides, J. (1996). Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1232–1245. Edited by F. C. Neidhardt and others. Washington, DC: American Society of Microbiology.
  11. Hryniewicz, M. N. & Kredich, N. M. ( 1994; ). Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol 176, 3673-3682.
    [Google Scholar]
  12. Jordan, P. M. & Sheman, D. ( 1972; ). δ-Aminolevulinic acid synthesis. In The Enzymes , pp. 339-356. Edited by P. D. Boyer. New York: Academic Press.
  13. Jørgensen, C. & Dandanell, G. ( 1999; ). Isolation and characterization of mutations in the Escherichia coli regulatory protein XapR. J Bacteriol 181, 4397-4403.
    [Google Scholar]
  14. Jourdan, A. D. & Stauffer, G. V. ( 1998; ). Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180, 4865-4871.
    [Google Scholar]
  15. Jourdan, A. D. & Stauffer, G. V. ( 1999; ). GcvA-mediated activation of gcvT-lacZ expression involves the carboxy-terminal domain of the α subunit of RNA polymerase. FEMS Microbiol Lett 181, 307-312.
    [Google Scholar]
  16. Kikuchi, G. ( 1973; ). The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1, 169-187.[CrossRef]
    [Google Scholar]
  17. Kilstrup, M., Meng, L. M., Neuhard, J. & Nygaard, P. ( 1989; ). Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171, 2124-2127.
    [Google Scholar]
  18. Kim, J., Zwieb, C., Wu, C. & Adhya, S. ( 1989; ). Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85, 15-23.[CrossRef]
    [Google Scholar]
  19. Lin, R., D’Ari, R. & Newman, E. B. ( 1992; ). λ placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174, 1948-1955.
    [Google Scholar]
  20. Marinus, M. G. (1996). Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 782–791. Edited by F. C. Neidhardt and others. Washington, DC: American Society of Microbiology.
  21. Matthews, R. G. (1996). One-carbon metabolism. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 600–611. Edited by F. C. Neidhardt and others. Washington, DC: American Society of Microbiology.
  22. Miller, J. H. (1992). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Mudd, S. H. & Cantoni, G. L. ( 1964; ). Biological transmethylation, methyl-group neogenesis and other ‘one-carbon’ metabolic reactions dependent upon tetrahydrofolic acid. In Comprehensive Biochemistry , pp. 1-47. Edited by M. Florkin & E. H. Stotz. Amsterdam: Elsevier.
  24. Ogawa, N., McFall, S. M., Klem, T. J., Miyashita, K. & Chakrabarty, A. M. ( 1999; ). Transcriptional activation of the chlorocatecol degradative genes of Ralstonia eutropha NH9. J Bacteriol 181, 6697-6705.
    [Google Scholar]
  25. Pizer, L. I. ( 1965; ). Glycine synthesis and metabolism in Escherichia coli. J Bacteriol 89, 1145-1150.
    [Google Scholar]
  26. Pizer, L. I. & Potochny, M. L. ( 1964; ). Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol 88, 611-619.
    [Google Scholar]
  27. Plamann, M. D., Rapp, W. D. & Stauffer, G. V. ( 1983; ). Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet 192, 15-20.[CrossRef]
    [Google Scholar]
  28. Raunio, R. & Rosenqvist, H. ( 1970; ). Amino acid pool of Escherichia coli during the different phases of growth. Acta Chemica Scandinavica 24, 2737-2744.[CrossRef]
    [Google Scholar]
  29. Rhee, K. Y., Senear, D. F. & Hatfield, G. W. ( 1998; ). Activation of gene expression by a ligand-induced conformational change of a protein-DNA complex. J Biol Chem 273, 11257-11266.[CrossRef]
    [Google Scholar]
  30. Rolfes, R. J. & Zalkin, H. ( 1988; ). Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. J Biol Chem 263, 19653-19661.
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597-626.[CrossRef]
    [Google Scholar]
  33. Stauffer, G. V. (1996). Biosynthesis of serine, glycine, and one-carbon units. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 506–513. Edited by F. C. Neidhardt and others. Washington, DC: American Society of Microbiology.
  34. Stauffer, L. T. & Stauffer, G. V. ( 1994; ). Characterization of the gcv control region from Escherichia coli. J Bacteriol 176, 6159-6164.
    [Google Scholar]
  35. Stauffer, L. T. & Stauffer, G. V. ( 1998a; ). Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for gcvT::lacZ expression in Escherichia coli. Microbiology 144, 1417-1422.[CrossRef]
    [Google Scholar]
  36. Stauffer, L. T. & Stauffer, G. V. ( 1998b; ). Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. Microbiology 144, 2865-2872.[CrossRef]
    [Google Scholar]
  37. Stauffer, L. T. & Stauffer, G. V. ( 1999; ). Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon. Microbiology 145, 569-576.[CrossRef]
    [Google Scholar]
  38. Stauffer, L. T., Ghrist, A. & Stauffer, G. V. ( 1993; ). The Escherichia coli gcvT gene encoding the T-protein of the glycine cleavage enzyme system. DNA seq-J DNA Seq Mapping 3, 339-346.
    [Google Scholar]
  39. Stauffer, L. T., Fogarty, S. J. & Stauffer, G. V. ( 1994; ). Characterization of the Escherichia coli gcv operon. Gene 142, 17-22.[CrossRef]
    [Google Scholar]
  40. Steiert, P. S., Stauffer, L. T. & Stauffer, G. V. ( 1990; ). The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172, 6142-6144.
    [Google Scholar]
  41. van Keulen, G., Girbal, L., van der Bergh, E. R. E., Dijkhuizen, L. & Meijer, W. G. ( 1998; ). The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 180, 1411-1417.
    [Google Scholar]
  42. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97-106.
    [Google Scholar]
  43. Wang, L., Helmann, J. D. & Winans, S. C. ( 1992; ). The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69, 659-667.[CrossRef]
    [Google Scholar]
  44. Wek, R. C. & Hatfield, G. W. ( 1988; ). Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203, 643-663.[CrossRef]
    [Google Scholar]
  45. Wilson, R. L. & Stauffer, G. V. ( 1994; ). DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system. J Bacteriol 176, 2862-2868.
    [Google Scholar]
  46. Wilson, R. L., Stauffer, L. T. & Stauffer, G. V. ( 1993a; ). Roles of GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175, 5129-5134.
    [Google Scholar]
  47. Wilson, R. L., Steiert, P. S. & Stauffer, G. V. ( 1993b; ). Positive regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175, 902-904.
    [Google Scholar]
  48. Wilson, R. L., Urbanowski, M. L. & Stauffer, G. V. ( 1995; ). DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 177, 4940-4946.
    [Google Scholar]
  49. Wonderling, L. D. & Stauffer, G. V. ( 1999; ). The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 181, 1912-1919.
    [Google Scholar]
  50. Wonderling, L. D., Urbanowski, M. L. & Stauffer, G. V. ( 2000; ). GcvA biding site 1 in the gcvTHP promoter of Escherichia coli is required for GcvA-mediated repression but not for GcvA-mediated activation. Microbiology 146, 2909-2918.
    [Google Scholar]
  51. Zhou, Y., Zhang, X. & Ebright, R. H. ( 1991; ). Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res 19, 6052.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2203
Loading
/content/journal/micro/10.1099/00221287-148-7-2203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error