1887

Abstract

Glycosylphosphatidylinositol (GPI)-anchoring represents a mechanism for attaching proteins to the cell surface of all eukaryotic cells. Two localizations of GPI proteins have been observed in the yeasts and : plasma membrane and cell wall. The signals and the mechanisms involved in this differential targeting are presently not well understood. Here several cell-wall-related phenotypes of a / deletion are described, where / encodes a GPI-anchor-modifying activity. In both organisms, the structure and composition of the cell wall was modified, with a clear increase in chitin deposition. Cell-wall-targeted proteins accumulated in the growth medium, whereas the protein content of the cell wall decreased significantly, suggesting inefficiency of the covalent linkage. The level of plasma-membrane-targeted GPI proteins was not affected. Sequence analyses revealed that gene families involved in the addition of phosphoethanolamines to the core GPI anchor are highly conserved between eukaryotes, with the exception of the Gpi7 family which seems to be fungus-specific. These data are compatible with the notion that the phosphoethanolamine added by Gpi7 protein to the GPI anchor is a key factor in the covalent linkage of cell-wall proteins to fungal cell-wall components.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2125
2002-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482125a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2125&mimeType=html&fmt=ahah

References

  1. Benachour, A., Sipos, G., Flury, I., Reggiori, F., Canivenc-Gansel, E., Vionnet, C., Conzelmann, A. & Benghezal, M. ( 1999; ). Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J Biol Chem 274, 15251-15261.[CrossRef]
    [Google Scholar]
  2. Benghezal, M., Lipke, P. N. & Conzelmann, A. ( 1995; ). Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae. J Cell Biol 130, 1333-1344.[CrossRef]
    [Google Scholar]
  3. Caro, L. H., Tettelin, H., Vossen, J. H., Ram, A. F., van den Ende, H. & Klis, F. M. ( 1997; ). In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477-1489.[CrossRef]
    [Google Scholar]
  4. Dallies, N., Francois, J. & Paquet, V. ( 1998; ). A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14, 1297-1306.[CrossRef]
    [Google Scholar]
  5. de Groot, P., Ruiz, C., Vazquez de Aldana, C. R. & 13 other authors ( 2001; ). A genomic approach for identification and classification of genes involved in the cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2, 1–19.[CrossRef]
    [Google Scholar]
  6. Flury, I., Benachour, A. & Conzelmann, A. ( 2000; ). YLL031c belongs to a novel family of membrane proteins involved in the transfer of ethanolaminephosphate onto the core structure of glycosylphosphatidylinositol anchors in yeast. J Biol Chem 275, 24458-24465.[CrossRef]
    [Google Scholar]
  7. Grimme, S. J., Westfall, B. A., Wiedman, J. M., Taron, C. H. & Orlean, P. ( 2001; ). The essential smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J Biol Chem 276, 27731-27739.[CrossRef]
    [Google Scholar]
  8. Hamada, K., Fukuchi, S., Arisawa, M., Baba, M. & Kitada, K. ( 1998; ). Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol Gen Genet 258, 53-59.[CrossRef]
    [Google Scholar]
  9. Hoyer, L. L. ( 2001; ). The ALS gene family of Candida albicans. Trends Microbiol 9, 176-180.[CrossRef]
    [Google Scholar]
  10. Hoyer, L. L., Scherer, S., Shatzman, A. R. & Livi, G. P. ( 1995; ). Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15, 39-54.[CrossRef]
    [Google Scholar]
  11. Kapteyn, J. C., Montijn, R. C., Dijkgraaf, G. J., Van den Ende, H. & Klis, F. M. ( 1995; ). Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 177, 3788-3792.
    [Google Scholar]
  12. Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N. & Klis, F. M. ( 1996; ). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6, 337-345.[CrossRef]
    [Google Scholar]
  13. Kapteyn, J. C., van den Ende, H. & Klis, F. M. ( 1999; ). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426, 373-383.[CrossRef]
    [Google Scholar]
  14. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E., Muller, W. H., Andel, A., Verkleij, A. J., Makarow, M., Van Den Ende, H. & Klis, F. M. ( 2000; ). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601-611.
    [Google Scholar]
  15. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E. ( 1997; ). Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→3)-glucan, and chitin. J Biol Chem 272, 17762-17775.[CrossRef]
    [Google Scholar]
  16. Leidich, S. D., Kostova, Z., Latek, R. R., Costello, L. C., Drapp, D. A., Gray, W., Fassler, J. S. & Orlean, P. ( 1995; ). Temperature-sensitive yeast Gpi anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J Biol Chem 270, 13029-13035.[CrossRef]
    [Google Scholar]
  17. Montijn, R. C., van Rinsum, J., van Schagen, F. A. & Klis, F. M. ( 1994; ). Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain. J Biol Chem 269, 19338-19342.
    [Google Scholar]
  18. Ohishi, K., Inoue, N., Maeda, Y., Takeda, J., Riezman, H. & Kinoshita, T. ( 2000; ). Gaa1p and Gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of Gpi to proteins. Mol Biol Cell 11, 1523-1533.[CrossRef]
    [Google Scholar]
  19. Ovalle, R., Lim, S. T., Holder, B., Jue, C. K., Moore, C. W. & Lipke, P. N. ( 1998; ). A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14, 1159-1166.[CrossRef]
    [Google Scholar]
  20. Popolo, L. & Vai, M. ( 1998; ). Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J Bacteriol 180, 163-166.
    [Google Scholar]
  21. Popolo, L., Vai, M., Gatti, E., Porello, S., Bonfante, P., Balestrini, R. & Alberghina, L. ( 1993; ). Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175, 1879-1885.
    [Google Scholar]
  22. Richard, M., Rosas-Quijano, R., Bezzate, S., Bordon-Pallier, F. & Gaillardin, C. ( 2001; ). Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol 183, 3098-3107.[CrossRef]
    [Google Scholar]
  23. Richard, M., Ibata Ombetta, S., Dromer, F., Bordon-Pallier, F., Jouault, T. & Gaillardin, C. ( 2002; ). Complete glycosylphosphatidylinositol anchors are required for full morphogenesis and virulence in Candida albicans. Mol Microbiol 44, 841-853.[CrossRef]
    [Google Scholar]
  24. Schreuder, M. P., Brekelmans, S., van den Ende, H. & Klis, F. M. ( 1993; ). Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9, 399-409.[CrossRef]
    [Google Scholar]
  25. Smits, G. J., Kapteyn, J. C., van den Ende, H. & Klis, F. M. ( 1999; ). Cell wall dynamics in yeast. Curr Opin Microbiol 2, 348-352.[CrossRef]
    [Google Scholar]
  26. Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., Fujita, T., Takahashi, M., Kitani, T. & Kinoshita, T. ( 1993; ). Deficiency of the Gpi anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703-711.[CrossRef]
    [Google Scholar]
  27. Taron, C. H., Wiedman, J. M., Grimme, S. J. & Orlean, P. ( 2000; ). Glycosylphosphatidylinositol biosynthesis defects in Gpi11p- and Gpi13p-deficient yeast suggest a branched pathway and implicate Gpi13p in phosphoethanolamine transfer to the third mannose. Mol Biol Cell 11, 1611-1630.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef]
    [Google Scholar]
  29. Tiede, A., Bastisch, I., Schubert, J., Orlean, P. & Schmidt, R. E. ( 1999; ). Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 380, 503-523.
    [Google Scholar]
  30. Toh-e, A. & Oguchi, T. ( 1999; ). Las21 participates in extracellular/cell surface phenomena in Saccharomyces cerevisiae. Genes Genet Syst 74, 241-256.[CrossRef]
    [Google Scholar]
  31. Vossen, J. H., Muller, W. H., Lipke, P. N. & Klis, F. M. ( 1997; ). Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. J Bacteriol 179, 2202-2209.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2125
Loading
/content/journal/micro/10.1099/00221287-148-7-2125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error