1887

Abstract

Sequence homologies suggest that the 168 gene encodes UDP--acetylglucosamine:undecaprenyl-P -acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP--acetylglucosamine. Inhibition of expression mediated by an IPTG-inducible P promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl -acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of , containing two partly overlapping σ-controlled promoters, is similar to that of , the gene encoding the major σ factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2079
2002-07-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482079a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2079&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol8:115–118
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol81:741–746
    [Google Scholar]
  3. Araki Y., Ito E. 1989; Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol17:121–135[CrossRef]
    [Google Scholar]
  4. Archibald A. R., Hancock I. C., Harwood C. R. 1993; Cell wall structure, synthesis and turnover. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics pp381–410 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Blumenkrantz N., Asboe-Hansen G. 1973; New method for quantitative determination of uronic acids. Anal Biochem54:484–489[CrossRef]
    [Google Scholar]
  6. Boylen C. W., Ensign J. C. 1968; Ratio of teichoic acid and peptidoglycan in cell walls of Bacillus subtilis following spore germination and during vegetative growth. J Bacteriol96:421–427
    [Google Scholar]
  7. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene68:139–149[CrossRef]
    [Google Scholar]
  8. Chen P. S., Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Anal Chem18:1756–1758
    [Google Scholar]
  9. Chung C. T., Miller R. H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res16:3580[CrossRef]
    [Google Scholar]
  10. Daniel R. A., Errington J. 1993; DNA sequence of the murE murD region of Bacillus subtilis 168. J Gen Microbiol139:361–370[CrossRef]
    [Google Scholar]
  11. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res16:9878[CrossRef]
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395[CrossRef]
    [Google Scholar]
  13. Estrela A.-I., Pooley H. M., de Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid, poly(3- O -β-d-glucopyranosyl- N -acetylgalactosamine 1-phosphate); gneA , a new locus, is associated with UDP -N -acetylglucosamine 4-epimerase activity. J Gen Microbiol137:943–950[CrossRef]
    [Google Scholar]
  14. Freymond P.-P. 1995; Génétique et Biochimie des Acides Teichoı̈ques Secondaires de Bacillus subtilis 168 et W23. PhD Thesis University of Lausanne; Switzerland:
    [Google Scholar]
  15. Grant W. D. 1979; Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J Bacteriol 137:35–43
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  17. Hancock I. C., Wiseman G., Baddiley J. 1976; Biosynthesis of the unit that links teichoic acid to the bacterial wall: inhibition by tunicamycin. FEBS Lett69:75–80[CrossRef]
    [Google Scholar]
  18. Helmann J. D. 1995; Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360[CrossRef]
    [Google Scholar]
  19. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon of Bacillus subtilis . Mol Microbiol3:1257–1268[CrossRef]
    [Google Scholar]
  20. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet108:277–287
    [Google Scholar]
  21. Karamata D., McConnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis. J Bacteriol111:73–79
    [Google Scholar]
  22. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  23. Lazarevic V., Karamata D. 1995; The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol16:345–355[CrossRef]
    [Google Scholar]
  24. Lazarevic V., Mauël C., Soldo B., Freymond P.-P., Margot P., Karamata D. 1995; Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology141:329–335[CrossRef]
    [Google Scholar]
  25. Liu W., Hulett F. M. 1998; Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology144:1443–1450[CrossRef]
    [Google Scholar]
  26. Liu W., Eder S., Hulett F. M. 1998; Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J Bacteriol180:753–758
    [Google Scholar]
  27. Maki H., Yamaguchi T., Murakami K. 1994; Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. J Bacteriol176:4993–5000
    [Google Scholar]
  28. Mauël C., Young M., Margot P., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet215:388–394[CrossRef]
    [Google Scholar]
  29. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol137:929–941[CrossRef]
    [Google Scholar]
  30. Mauël C., Young M., Monsutti-Grecescu A., Marriott S. A., Karamata D. 1994; Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology140:2279–2288[CrossRef]
    [Google Scholar]
  31. Meier-Dieter U., Barr K., Starman R., Hatch L., Rick P. D. 1992; Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe–rff gene cluster. J Biol Chem267:746–753
    [Google Scholar]
  32. Miller J. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Nicholson W. L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp391–450 Edited by Harwood C. R., Cutting S. M.. Chichester: Wiley;
    [Google Scholar]
  34. Pooley H. M., Karamata D. 1994; Teichoic acid synthesis in Bacillus subtilis : genetic organization and biological roles. In Bacterial Cell Wall pp187–198 Edited by Ghuysen J.-M., Hakenbeck R.. Amsterdam: Elsevier Science;
    [Google Scholar]
  35. Pooley H. M., Karamata D. 2000; Incorporation of [2C-3H]glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin. Microbiology146:797–805
    [Google Scholar]
  36. Pooley H. M., Abellan F.-X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol137:921–928[CrossRef]
    [Google Scholar]
  37. Pooley H. M., Abellan F.-X., Karamata D. 1992; CDP-glycerol: poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF ( rodC). J Bacteriol174:646–649
    [Google Scholar]
  38. Rogers H. J., McConnell M., Burdett I. D. J. 1970; The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J Gen Microbiol61:155–171[CrossRef]
    [Google Scholar]
  39. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of the Bacillus subtilis phoR gene. J Bacteriol170:5935–5938
    [Google Scholar]
  40. Shibaev V. N., Duckworth M., Archibald A. R., Baddiley J. 1973; The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J135:383–384
    [Google Scholar]
  41. Soldo B., Lazarevic V., Margot P., Karamata D. 1993; Sequencing and analysis of the divergon comprising gtaB , the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol139:3185–3195[CrossRef]
    [Google Scholar]
  42. Soldo B., Lazarevic V., Mauël C., Karamata D. 1996; Sequence of the 305°–307° region of the Bacillus subtilis chromosome. Microbiology142:3079–3088[CrossRef]
    [Google Scholar]
  43. Soldo B., Lazarevic V., Pagni M., Karamata D. 1999; Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol31:795–805[CrossRef]
    [Google Scholar]
  44. Soldo B., Lazarevic V., Pooley H. M., Karamata D. 2002; Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH ) encodes the UDP- N -acetylglucosamine 2-epimerase. J Bacteriol184: in press
    [Google Scholar]
  45. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol6:175–182
    [Google Scholar]
  46. Wang L. F., Doi R. H. 1987; Promoter switching during development and the termination site of the σ43 operon of Bacillus subtilis. Mol Gen Genet. 207114–119[CrossRef]
  47. Wright J., Heckels J. E. 1975; The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem J147:187–189
    [Google Scholar]
  48. Yansura D. G., Henner D. J. 1984; Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci USA81:439–443[CrossRef]
    [Google Scholar]
  49. Yokoyama K., Mizuguchi H., Araki Y., Kaya S., Ito E. 1989; Biosynthesis of linkage units for teichoic acids in gram-positive bacteria: distribution of related enzymes and their specificities for UDP-sugars and lipid-linked intermediates. J Bacteriol171:940–946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2079
Loading
/content/journal/micro/10.1099/00221287-148-7-2079
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error