1887

Abstract

Sequence homologies suggest that the 168 gene encodes UDP--acetylglucosamine:undecaprenyl-P -acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP--acetylglucosamine. Inhibition of expression mediated by an IPTG-inducible P promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl -acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of , containing two partly overlapping σ-controlled promoters, is similar to that of , the gene encoding the major σ factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2079
2002-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482079a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2079&mimeType=html&fmt=ahah

References

  1. Ames, B. N. ( 1966; ). Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8, 115-118.
    [Google Scholar]
  2. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741-746.
    [Google Scholar]
  3. Araki, Y. & Ito, E. ( 1989; ). Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol 17, 121-135.[CrossRef]
    [Google Scholar]
  4. Archibald, A. R., Hancock, I. C. & Harwood, C. R. ( 1993; ). Cell wall structure, synthesis and turnover. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics , pp. 381-410. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC. American Society for Microbiology.
  5. Blumenkrantz, N. & Asboe-Hansen, G. ( 1973; ). New method for quantitative determination of uronic acids. Anal Biochem 54, 484-489.[CrossRef]
    [Google Scholar]
  6. Boylen, C. W. & Ensign, J. C. ( 1968; ). Ratio of teichoic acid and peptidoglycan in cell walls of Bacillus subtilis following spore germination and during vegetative growth. J Bacteriol 96, 421-427.
    [Google Scholar]
  7. Chambers, S. P., Prior, S. E., Barstow, D. A. & Minton, N. P. ( 1988; ). The pMTL nic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68, 139-149.[CrossRef]
    [Google Scholar]
  8. Chen, P. S., Toribara, T. Y. & Warner, H. ( 1956; ). Microdetermination of phosphorus. Anal Chem 18, 1756-1758.
    [Google Scholar]
  9. Chung, C. T. & Miller, R. H. ( 1988; ). A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16, 3580.[CrossRef]
    [Google Scholar]
  10. Daniel, R. A. & Errington, J. ( 1993; ). DNA sequence of the murEmurD region of Bacillus subtilis 168. J Gen Microbiol 139, 361-370.[CrossRef]
    [Google Scholar]
  11. Del Sal, G., Manfioletti, G. & Schneider, C. ( 1988; ). A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16, 9878.[CrossRef]
    [Google Scholar]
  12. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef]
    [Google Scholar]
  13. Estrela, A.-I., Pooley, H. M., de Lencastre, H. & Karamata, D. ( 1991; ). Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid, poly(3-O-β-d-glucopyranosyl-N-acetylgalactosamine 1-phosphate); gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. J Gen Microbiol 137, 943-950.[CrossRef]
    [Google Scholar]
  14. Freymond, P.-P. (1995). Génétique et Biochimie des Acides Teichoı̈ques Secondaires de Bacillus subtilis 168 et W23. PhD Thesis, University of Lausanne, Switzerland.
  15. Grant, W. D. ( 1979; ). Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J Bacteriol 137, 35-43.
    [Google Scholar]
  16. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.[CrossRef]
    [Google Scholar]
  17. Hancock, I. C., Wiseman, G. & Baddiley, J. ( 1976; ). Biosynthesis of the unit that links teichoic acid to the bacterial wall: inhibition by tunicamycin. FEBS Lett 69, 75-80.[CrossRef]
    [Google Scholar]
  18. Helmann, J. D. ( 1995; ). Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23, 2351-2360.[CrossRef]
    [Google Scholar]
  19. Honeyman, A. L. & Stewart, G. C. ( 1989; ). The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol Microbiol 3, 1257-1268.[CrossRef]
    [Google Scholar]
  20. Karamata, D. & Gross, J. D. ( 1970; ). Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet 108, 277-287.
    [Google Scholar]
  21. Karamata, D., McConnell, M. & Rogers, H. J. ( 1972; ). Mapping of rod mutants of Bacillus subtilis. J Bacteriol 111, 73-79.
    [Google Scholar]
  22. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  23. Lazarevic, V. & Karamata, D. ( 1995; ). The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16, 345-355.[CrossRef]
    [Google Scholar]
  24. Lazarevic, V., Mauël, C., Soldo, B., Freymond, P.-P., Margot, P. & Karamata, D. ( 1995; ). Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology 141, 329-335.[CrossRef]
    [Google Scholar]
  25. Liu, W. & Hulett, F. M. ( 1998; ). Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144, 1443-1450.[CrossRef]
    [Google Scholar]
  26. Liu, W., Eder, S. & Hulett, F. M. ( 1998; ). Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J Bacteriol 180, 753-758.
    [Google Scholar]
  27. Maki, H., Yamaguchi, T. & Murakami, K. ( 1994; ). Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. J Bacteriol 176, 4993-5000.
    [Google Scholar]
  28. Mauël, C., Young, M., Margot, P. & Karamata, D. ( 1989; ). The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet 215, 388-394.[CrossRef]
    [Google Scholar]
  29. Mauël, C., Young, M. & Karamata, D. ( 1991; ). Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137, 929-941.[CrossRef]
    [Google Scholar]
  30. Mauël, C., Young, M., Monsutti-Grecescu, A., Marriott, S. A. & Karamata, D. ( 1994; ). Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140, 2279-2288.[CrossRef]
    [Google Scholar]
  31. Meier-Dieter, U., Barr, K., Starman, R., Hatch, L. & Rick, P. D. ( 1992; ). Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe–rff gene cluster. J Biol Chem 267, 746-753.
    [Google Scholar]
  32. Miller, J. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Nicholson, W. L. & Setlow, P. ( 1990; ). Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus , pp. 391-450. Edited by C. R. Harwood & S. M. Cutting. Chichester: Wiley.
  34. Pooley, H. M. & Karamata, D. ( 1994; ). Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles. In Bacterial Cell Wall , pp. 187-198. Edited by J.-M. Ghuysen & R. Hakenbeck. Amsterdam: Elsevier Science.
  35. Pooley, H. M. & Karamata, D. ( 2000; ). Incorporation of [2C-3H]glycerol into cell surface components of Bacillus subtilis 168 and thermosensitive mutants affected in wall teichoic acid synthesis: effect of tunicamycin. Microbiology 146, 797-805.
    [Google Scholar]
  36. Pooley, H. M., Abellan, F.-X. & Karamata, D. ( 1991; ). A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol 137, 921-928.[CrossRef]
    [Google Scholar]
  37. Pooley, H. M., Abellan, F.-X. & Karamata, D. ( 1992; ). CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). J Bacteriol 174, 646-649.
    [Google Scholar]
  38. Rogers, H. J., McConnell, M. & Burdett, I. D. J. ( 1970; ). The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J Gen Microbiol 61, 155-171.[CrossRef]
    [Google Scholar]
  39. Seki, T., Yoshikawa, H., Takahashi, H. & Saito, H. ( 1988; ). Nucleotide sequence of the Bacillus subtilis phoR gene. J Bacteriol 170, 5935-5938.
    [Google Scholar]
  40. Shibaev, V. N., Duckworth, M., Archibald, A. R. & Baddiley, J. ( 1973; ). The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J 135, 383-384.
    [Google Scholar]
  41. Soldo, B., Lazarevic, V., Margot, P. & Karamata, D. ( 1993; ). Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139, 3185-3195.[CrossRef]
    [Google Scholar]
  42. Soldo, B., Lazarevic, V., Mauël, C. & Karamata, D. ( 1996; ). Sequence of the 305°–307° region of the Bacillus subtilis chromosome. Microbiology 142, 3079-3088.[CrossRef]
    [Google Scholar]
  43. Soldo, B., Lazarevic, V., Pagni, M. & Karamata, D. ( 1999; ). Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31, 795-805.[CrossRef]
    [Google Scholar]
  44. Soldo, B., Lazarevic, V., Pooley, H. M. & Karamata, D. (2002). Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol 184 (in press).
  45. Sonnhammer, E. L., von Heijne, G. & Krogh, A. ( 1998; ). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6, 175-182.
    [Google Scholar]
  46. Wang, L. F. & Doi, R. H. ( 1987; ). Promoter switching during development and the termination site of the σ43 operon of Bacillus subtilis. Mol Gen Genet 207, 114-119.[CrossRef]
    [Google Scholar]
  47. Wright, J. & Heckels, J. E. ( 1975; ). The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem J 147, 187-189.
    [Google Scholar]
  48. Yansura, D. G. & Henner, D. J. ( 1984; ). Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci USA 81, 439-443.[CrossRef]
    [Google Scholar]
  49. Yokoyama, K., Mizuguchi, H., Araki, Y., Kaya, S. & Ito, E. ( 1989; ). Biosynthesis of linkage units for teichoic acids in gram-positive bacteria: distribution of related enzymes and their specificities for UDP-sugars and lipid-linked intermediates. J Bacteriol 171, 940-946.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2079
Loading
/content/journal/micro/10.1099/00221287-148-7-2079
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error