1887

Abstract

Members of a family of ATP-dependent proteases related to Lon from are present in most prokaryotes and eukaryotes. These proteases are generally reported to be heat induced, and various regulatory systems have been described. The authors cloned and disrupted the gene and studied the regulation of its expression in . is negatively regulated by the HspR/HAIR repressor/operator system, suggesting that Lon is produced concomitantly with the other members of this regulon, DnaK and ClpB. The mutant grew more slowly than the wild-type and spore germination was impaired at high temperature. Nevertheless its cell cycle was not greatly affected and it sporulated normally.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1931
2002-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481931a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1931&mimeType=html&fmt=ahah

References

  1. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces . Gene190:315–317[CrossRef]
    [Google Scholar]
  2. Bucca G., Hindle Z., Smith C. P. 1997; Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol179:5999–6004
    [Google Scholar]
  3. Bucca G., Brassington A. M., Schonfeld H. J., Smith C. P. 2000; The HspR regulon of Streptomyces coelicolor : a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol38:1093–1103
    [Google Scholar]
  4. Bukau B. 1993; Regulation of the Escherichia coli heat-shock response. Mol Microbiol9:671–680[CrossRef]
    [Google Scholar]
  5. De Crecy-Lagard V., Servant-Moisson P., Viala J., Grandvalet C., Mazodier P. 1999; Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces . Mol Microbiol32:505–517[CrossRef]
    [Google Scholar]
  6. Gibson T. J. 1984; Studies on the Epstein-Barr virus genome PhD thesis University of Cambridge;
    [Google Scholar]
  7. Goldberg A. L., Moerschell R. P., Chung C. H., Maurizi M. R. 1994; ATP-dependent protease La (Lon) from Escherichia coli . Methods Enzymol244:350–375
    [Google Scholar]
  8. Gottesman S., Maurizi M. R. 1992; Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev56:592–621
    [Google Scholar]
  9. Grandvalet C., Servant P., Mazodier P. 1997; Disruption of hspR , the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol23:77–84[CrossRef]
    [Google Scholar]
  10. Grandvalet C., Rapoport G., Mazodier P. 1998; hrcA encoding the repressor of the groEL genes in Streptomyces albus G is associated with a second dnaJ gene. J. Bacteriol180:5129–5134
    [Google Scholar]
  11. Grandvalet C., de Crécy-Lagard V., Mazodier P. 1999; The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol31:521–532[CrossRef]
    [Google Scholar]
  12. Herman C., Thevenet D., D’Ari R., Bouloc P. 1995; Degradation of sigma 32, the heat shock regulator in Escherichia coli , is governed by HflB. Proc Natl Acad Sci USA92:3516–3520[CrossRef]
    [Google Scholar]
  13. Hopwood D. A. 1999; Forty years of genetics with Streptomyces : from in vivo through in vitro to in silico . Microbiology145:2183–2202
    [Google Scholar]
  14. Hopwood D. A., Bibb M. J., Chater K. F.. 7 other authors 1985; Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  15. Jubete Y., Maurizi M. R., Gottesman S. 1996; Role of the heat shock protein DnaJ in the lon -dependent degradation of naturally unstable proteins. J Biol Chem271:30798–30803[CrossRef]
    [Google Scholar]
  16. Knipfer N., Seth A., Roudiak S. G., Shrader T. E. 1999; Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli . Gene231:95–104[CrossRef]
    [Google Scholar]
  17. Liu J., Cosby W. M., Zuber P. 1999; Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis . Mol Microbiol33:415–428[CrossRef]
    [Google Scholar]
  18. Murakami T., Holt T. G., Thompson C. J. 1989; Thiostrepton-induced gene expression in Streptomyces lividans . J Bacteriol171:1459–1466
    [Google Scholar]
  19. Muth G., Nubbaumer B., Wohlleben W., Pühler A. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet219:341–348[CrossRef]
    [Google Scholar]
  20. Pozidis C., Lammertyn E., Politou A. S., Anné J., Tsiftsoglou A. S., Sianidis G., Economou A. 2001; Protein secretion biotechnology using Streptomyces lividans : large-scale production of functional trimeric tumor necrosis factor alpha. Biotechnol Bioeng72:611–619[CrossRef]
    [Google Scholar]
  21. Roudiak S. G., Seth A., Knipfer N., Shrader T. E. 1998; The lon protease from Mycobacterium smegmatis : molecular cloning, sequence analysis, functional expression, and enzymatic characterization. Biochemistry37:377–386[CrossRef]
    [Google Scholar]
  22. Sambrook J., Frisch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Schweder T., Lee K.-H., Lomovskaya O., Matin A. 1996; Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. J. Bacteriol178:470–476
    [Google Scholar]
  24. Serrano M., Hovel S., Moran C. P. Jr, Henriques A. O., Volker U. 2001; Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis . J. Bacteriol183:2995–3003[CrossRef]
    [Google Scholar]
  25. Servant P., Mazodier P. 1996; Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J. Bacteriol178:7031–7036
    [Google Scholar]
  26. Spohn G., Scarlato V. 1999; The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori . Mol Microbiol34:663–674[CrossRef]
    [Google Scholar]
  27. Sun J., Kelemen G. H., Fernandez-Abalos J. M., Bibb M. J. 1999; Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology145:2221–2227
    [Google Scholar]
  28. Tojo N., Inouye S., Komano T. 1993a; Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth. J Bacteriol175:2271–2277
    [Google Scholar]
  29. Tojo N., Inouye S., Komano T. 1993b; The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus . J Bacteriol175:4545–4549
    [Google Scholar]
  30. Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B. 2001; Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol40:397–413[CrossRef]
    [Google Scholar]
  31. Turgay K., Hahn J., Burghoorn J., Dubnau D. 1998; Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J17:6730–6738[CrossRef]
    [Google Scholar]
  32. Viala J., Rapoport G., Mazodier P. 2000; The clpP multigenic family in Streptomyces lividans : conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol38:602–612[CrossRef]
    [Google Scholar]
  33. Wright R., Stephens C., Zweiger G., Shapiro L., Alley M. R. 1996; Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Genes Dev10:1532–1542[CrossRef]
    [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  35. Yura T., Nagai H., Mori H. 1993; Regulation of the heat-shock response in bacteria. Annu Rev Microbiol47:321–350[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1931
Loading
/content/journal/micro/10.1099/00221287-148-6-1931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error