1887

Abstract

Vfr of is 91% similar to the cAMP receptor protein (CRP) of . Based on the high degree of sequence homology between the two proteins, the question arose whether Vfr had a global regulatory effect on gene expression for as CRP did for . This report provides two-dimensional polyacrylamide gel electrophoretic evidence that Vfr is a global regulator of gene expression in . In a :: null mutant, at least 43 protein spots were absent or decreased when compared to the proteome pattern of the parent strain. In contrast, 17 protein spots were absent or decreased in the parent strain when compared to the :: mutant. Thus, a mutation in affected production of at least 60 proteins in . In addition, the question whether Vfr and CRP shared similar mechanistic characteristics was addressed. To ascertain whether Vfr, like CRP, can bind cAMP, Vfr and CRP were purified to homogeneity and their apparent dissociation constants ( ) for binding to cAMP were determined. The values were 16 μM for Vfr and 04 μM for CRP, suggesting that these proteins have a similar affinity for cAMP. Previously the authors had demonstrated that Vfr could complement a mutation and modulate catabolite repression in . This study presents evidence that Vfr binds to the promoter and that this binding requires the presence of cAMP. Finally, the possible involvement of Vfr in catabolite repression control in was investigated. It was found that succinate repressed production of mannitol dehydrogenase, glucose-6-phosphate dehydrogenase, amidase and urocanase both in the parent and in two null mutants. This implied that catabolite repression control was not affected by the null mutation. In support of this, the cloned gene failed to complement a mutation in the gene. Thus, although Vfr is structurally similar to CRP, and is a global regulator of gene expression in , Vfr is not required for catabolite repression control in this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1561
2002-05-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481561a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1561&mimeType=html&fmt=ahah

References

  1. Albus, A. M., Pesci, E. C., Runyen-Janecky, L. J., West, S. E. H. & Iglewski, B. H. ( 1997; ). Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179, 3928-3935.
    [Google Scholar]
  2. Botsford, J. L. & Harman, J. G. ( 1992; ). Cyclic AMP in prokaryotes. Microbiol Rev 56, 100-122.
    [Google Scholar]
  3. Brammar, W. J. & Clarke, P. H. ( 1964; ). Induction and repression of Pseudomonas aeruginosa amidase. J Gen Microbiol 37, 307-319.[CrossRef]
    [Google Scholar]
  4. Chandler, M. S. ( 1992; ). The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89, 1626-1630.[CrossRef]
    [Google Scholar]
  5. Chen, P.-F., Tu, S.-C., Hagag, N., Wu, F. Y.-H. & Wu, C.-W. ( 1985; ). Isolation and characterization of a cyclic AMP receptor protein from luminous Vibrio harveyi cells. Arch Biochem Biophys 941, 425-431.
    [Google Scholar]
  6. Collier, D. N., Hager, P. W. & Phibbs, P. V.Jr ( 1996; ). Catabolite repression control in the pseudomonads. Res Microbiol 147, 551-561.[CrossRef]
    [Google Scholar]
  7. Cossart, P., Groisman, E. A., Serre, M.-C., Casadaban, M. J. & Gicquel-Sanzey, B. ( 1986; ). crp genes of Shigella flexneri, Salmonella typhimurium, and Escherichia coli. J Bacteriol 167, 639-646.
    [Google Scholar]
  8. DeCrecy-Lagard, V., Glaser, P., Lejeune, P., Sismeiro, O., Barber, C. E., Daniels, M. J. & Danchin, A. ( 1990; ). A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172, 5877-5883.
    [Google Scholar]
  9. DeVault, J. D., Hendrickson, W., Kato, J. & Chakrabarty, A. M. ( 1991; ). Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. Mol Microbiol 5, 2503-2509.[CrossRef]
    [Google Scholar]
  10. Emmer, M., deCrombrugghe, B., Pastan, I. & Perlman, R. ( 1970; ). Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci USA 66, 480-487.[CrossRef]
    [Google Scholar]
  11. Fürste, J. P., Pansegrau, W., Frank, R., Blöcker, H., Scholz, P. & Bagdasarian, M. ( 1986; ). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48, 119-131.[CrossRef]
    [Google Scholar]
  12. Ghosaini, L. R., Brown, A. M. & Sturtevant, J. M. ( 1988; ). Scanning calorimetric study of the thermal unfolding of catabolic activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides. Biochemistry 27, 5257-5261.[CrossRef]
    [Google Scholar]
  13. Holloway, B. W., Krishnapillai, V. & Morgan, A. F. ( 1979; ). Chromosomal genetics of Pseudomonas. Microbiol Rev 43, 73-102.
    [Google Scholar]
  14. Hylemon, P. B. & Phibbs, P. V.Jr ( 1972; ). Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Biochem Biophys Res Commun 48, 1041-1048.[CrossRef]
    [Google Scholar]
  15. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, A. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749-795.[CrossRef]
    [Google Scholar]
  16. Lessie, T. G. & Neidhardt, F. C. ( 1967; ). Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. J Bacteriol 93, 1800-1810.
    [Google Scholar]
  17. MacGregor, C. H., Wolff, J. A., Arora, S. K. & Phibbs, P. V.Jr ( 1991; ). Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. J Bacteriol 173, 7204-7212.
    [Google Scholar]
  18. MacGregor, C. H., Arora, S. K., Hager, P. W., Dail, M. B. & Phibbs, P. V.Jr ( 1996; ). The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J Bacteriol 178, 5627-5635.
    [Google Scholar]
  19. Maleniak, T. C., Callan, R. J., Suh, S.-J. & West, S. E. H. (1996). Pseudomonas aeruginosa Vfr regulates expression of numerous proteins including elastase, alkaline protease, and phospholipase C. In 96th General Meeting of the American Society for Microbiology. New Orleans, LA.
  20. Nieuwkoop, A. J., Boylan, S. A. & Bender, R. A. ( 1984; ). Regulation of hutUC operon expression by the catabolite gene activator protein-cyclic AMP complex in Klebsiella aerogenes. J Bacteriol 159, 934-939.
    [Google Scholar]
  21. Ohman, D. E., Sadoff, J. C. & Iglewski, B. H. ( 1980; ). Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect Immun 28, 899-908.
    [Google Scholar]
  22. Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. ( 1997; ). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179, 3127-3132.
    [Google Scholar]
  23. Phillips, A. T. & Mulfinger, L. M. ( 1981; ). Cyclic adenosine 3′,5′-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J. Bacteriol 145, 1286-1292.
    [Google Scholar]
  24. Runyen-Janecky, L. J., Albus, A. M., Iglewski, B. H. & West, S. E. H. (1996). The transcriptional activator Vfr binds to two apparently different binding sites in the promoters of Pseudomonas aeruginosa virulence genes. In 96th General Meeting of the American Society for Microbiology. New Orleans, LA.
  25. Runyen-Janecky, L. J., Sample, A. K., Maleniak, T. C. & West, S. E. H. ( 1997; ). A divergently transcribed open reading frame is located upstream of the Pseudomonas aeruginosa vfr gene, a homolog of Escherichia coli crp. J Bacteriol 179, 2802-2809.
    [Google Scholar]
  26. Schweizer, H. P. ( 1991; ). Escherichia–Pseudomonas shuttle vectors derived from pUC18/19. Gene 97, 109-112.[CrossRef]
    [Google Scholar]
  27. Schweizer, H. P. ( 1992; ). Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6, 1195-1204.[CrossRef]
    [Google Scholar]
  28. Schweizer, H. P. ( 1993; ). Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechnology 15, 831-834.
    [Google Scholar]
  29. Siegel, L. S., Hylemon, P. B. & Phibbs, P. V.Jr ( 1977; ). Cyclic adenosine 3′,5′-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J Bacteriol 129, 87-96.
    [Google Scholar]
  30. Smith, P., Krohn, R., Hermanson, A. & 7 other authors ( 1985; ). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.[CrossRef]
    [Google Scholar]
  31. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  32. Ullmann, A. ( 1996; ). Catabolite repression: a story without end. Res Microbiol 147, 455-458.[CrossRef]
    [Google Scholar]
  33. Ullmann, A. & Danchin, A. ( 1983; ). Role of cyclic AMP in bacteria. Adv Cyclic Nucleotide Res 15, 1-53.
    [Google Scholar]
  34. West, S. E. H., Sample, A. K. & Runyen-Janecky, L. J. ( 1994; ). The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol 176, 7532-7542.
    [Google Scholar]
  35. Woese, C. R., Weisburg, W. G., Hahn, C. M., Paster, B. J., Zablen, L. B., Lewis, B. J., Macke, R. J., Ludwig, W. & Stackebrandt, E. ( 1985; ). The physiology of purple bacteria: the gamma subdivision. Syst Appl Microbiol 6, 25-33.[CrossRef]
    [Google Scholar]
  36. Wolff, J. A., MacGregor, C. H., Eisenberg, R. C. & Phibbs, P. V.Jr ( 1991; ). Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 173, 4700-4706.
    [Google Scholar]
  37. Wood, D., Darlison, M. G., Wilde, R. J. & Guest, J. R. ( 1984; ). Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem J 222, 519-534.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1561
Loading
/content/journal/micro/10.1099/00221287-148-5-1561
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error