1887

Abstract

This study describes the biosynthesis of novel sulfur-containing polyhydroxyalkanoates (PHAs), which consist exclusively of hydroxypropylthioalkanoic acid containing thioether groups in the side chains. In addition, the utilization of alkylthioalkanoic acids (=thia fatty acids) by various bacteria was investigated. Based on feedings with propylthiooctanoic acid (PTO) or propylthiohexanoic acid, the metabolically engineered PHA-negative mutant PHB4 of , which harbours plasmid pBBR1:: expressing the PHA synthase of , synthesized two novel poly(3-hydroxy--propyl-ω-thioalkanoic) acids [poly(3HPTA)s]. A terpolyester consisting of 3-hydroxypropylthiobutyric acid (3HPTB), 3-hydroxypropylthiohexanoic acid (3HPTHx) and 3-hydroxypropyl- thiooctanoic acid (3HPTO) was synthesized from PTO, whereas a co-polyester of 3HPTB and 3HPTHx was synthesized from propylthiohexanoic acid. Fed-batch fermentation of PHB4(pBBR1::) on PTO was done on a 26-litre scale, providing a cell density of 73 g l, from which 45 g of the novel poly(3HPTB--3HPTHx--3HPTO) were isolated. The chemical structures of the poly(3HPTA)s were identified by gas chromatography/mass spectrometry, elemental sulfur analysis, partial pyrolysis and detailed mass spectrometric analysis, exhibiting 3HPTB, 3HPTHx and 3HPTO as constituents. These novel, hitherto undescribed, constituents of PHAs were randomly distributed in the co-polyesters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1397
2002-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481397a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1397&mimeType=html&fmt=ahah

References

  1. Anderson A. J., Dawes E. A. 1990; Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472
    [Google Scholar]
  2. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. 1988; Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982
    [Google Scholar]
  3. Choi J., Lee S. Y. 1999; Factors affecting the economics of polyhydroxyalkanoate production by bacterial fementation. Appl Microbiol Biotechnol 51:13–21 [CrossRef]
    [Google Scholar]
  4. Füchtenbusch B., Wullbrandt D., Steinbüchel A. 2000; Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53:167–172 [CrossRef]
    [Google Scholar]
  5. Fukui T., Doi Y. 1997; Cloning and analysis of the poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae . J Bacteriol 179:4821–4830
    [Google Scholar]
  6. Hein S., Paletta J., Steinbüchel A. 2002; Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Microbiol Biotechnol in press
    [Google Scholar]
  7. Hocking P. J., Marchessault R. H. 1994; Biopolyesters. In Chemistry and Technology of Biodegradable Polymers pp 48–96 Edited by Griffin G. J. L. London: Chapman & Hall;
    [Google Scholar]
  8. Langenbach S., Rehm B. H. A., Steinbüchel A. 1997; Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309 [CrossRef]
    [Google Scholar]
  9. Lütke-Eversloh T., Bergander K., Luftmann H., Steinbüchel A. 2001a; Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 14.7:11–19
    [Google Scholar]
  10. Lütke-Eversloh T., Bergander K., Luftmann H., Steinbüchel A. 2001b; Biosynthesis of poly(3-hydroxybutyrate- co -3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2:1061–1065 [CrossRef]
    [Google Scholar]
  11. Madison L. L., Huisman G. W. 1999; Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53
    [Google Scholar]
  12. Preu M. 1999 Experimental Design in der Rückstandsanalytik-Optimierung von GC/MS-Verfahren für die Analytik von Aminoglycosiden und Penicillinen PhD thesis Universität Aachen; Germany:
    [Google Scholar]
  13. Qi Q., Rehm B. H. A., Steinbüchel A. 1998; Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli ( fadR ): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol Lett 167:89–94
    [Google Scholar]
  14. Rehm B. H. A., Steinbüchel A. 1999; Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19 [CrossRef]
    [Google Scholar]
  15. Reiser S. E., Mitsky T. A., Gruys K. J. 2000; Characterization and cloning of an (R)-specific trans -2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli. Appl Microbiol Biotechnol 53:209–218 [CrossRef]
    [Google Scholar]
  16. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein submersverfahren zur kultur wasserstoffoxidierender bakterien: wachstumsphysologische untersuchungen. Arch Mikrobiol 38:209–222 [CrossRef]
    [Google Scholar]
  17. Skrede S., Sørensen H. N., Larsen L. N., Steineger H. H., Høvik K., Spydevold Ø. S., Horn R., Bremer J. 1997; Thia fatty acids, metabolism and metabolic effects. Biochim Biophys Acta 1344115–131 [CrossRef]
    [Google Scholar]
  18. Solaiman D. K. Y., Ashby R. D., Foglia T. A. 2000; Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 53:690–694 [CrossRef]
    [Google Scholar]
  19. Steinbüchel A. 2001; Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24 [CrossRef]
    [Google Scholar]
  20. Steinbüchel A., Hein S. 2001; Biochemical and molecular basis of polyhydroxyalkanoic acids in microorganisms. Adv Biochem Eng Biotechnol 71:81–123
    [Google Scholar]
  21. Steinbüchel A., Valentin H. E. 1995; Diversity of microbial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228 [CrossRef]
    [Google Scholar]
  22. Takagi Y., Hashii M., Maehara A., Yamane T. 1999; Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida . Macromolecules 32:8315–8318 [CrossRef]
    [Google Scholar]
  23. Worsey M. J., Williams P. A. 1975; Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1397
Loading
/content/journal/micro/10.1099/00221287-148-5-1397
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error