1887

Abstract

Potassium is the most abundant cation in cells. Therefore, plant-associated fungi and intracellular parasites are permanently or circumstantially exposed to high K and must avoid excessive K accumulation activating K efflux systems. Because high K and high pH are compatible in natural environments, free-living organisms cannot keep a permanent transmembrane ΔpH and cannot rely only on K/H antiporters, as do mitochondria. This study shows that the CTA3 is a K-efflux ATPase, and that other fungi are furnished with Na-efflux ATPases, which also pump Na. All these fungal ATPases, including those pumping only Na, form a phylogenetic group, IID or ENA, among P-type ATPases. By searching in databases and partial cloning of genes in species of Zygomycetes and Basidiomycetes, the authors conclude that probably all fungi have these genes. This study indicates that fungal K- or Na-ATPases evolved from an ancestral K-ATPase, through processes of gene duplication. In yeast hemiascomycetes these duplications have occurred recently and produced bifunctional ATPases, whereas in , and probably in other euascomycetes, they occurred earlier in evolution and produced specialized ATPases. In , adaptation to Na did not involve the duplication of the K-ATPase and thus it retains an enzyme which is probably close to the original one. The parasites and have ATPases phylogenetically related to fungal K-ATPases, which are probably functional homologues of the fungal enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-933
2002-04-01
2020-02-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480933a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-933&mimeType=html&fmt=ahah

References

  1. Almagro A, Prista C, Benito B, Lourero-Dias M. C., Ramos J. 2001; Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii . J Bacteriol183:3251–3255
    [Google Scholar]
  2. Auwera G. V. d., Wachter R. D. 1996; Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii and implications for the evolution of zoosporic fungi. J Mol Evol43:476–483
    [Google Scholar]
  3. Axelsen K. B., Palmgren M. G. 1998; Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol46:84–101
    [Google Scholar]
  4. Baldauf S. L., Palmer J. D. 1993; Animals and fungi are each other’s closest relatives, congruent evidence from multiple proteins. Proc Natl Acad Sci USA90:11558–11562
    [Google Scholar]
  5. Bañuelos M. A., Rodrı́guez-Navarro A. 1998; P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis . J Biol Chem273:1640–1646
    [Google Scholar]
  6. Bañuelos M. A, Quintero F. J., Rodrı́guez-Navarro A. 1995; Functional expression of the ENA1 (PMR2)-ATPase of Saccharomyces cerevisiae in Schizosaccharomyces pombe . Biochim Biophys Acta1229:233–238
    [Google Scholar]
  7. Bañuelos M. A, Synchrová H, Bleykasten-Grosshans C, Souciet J.-L., Potier S. 1998; The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology144:2749–2758
    [Google Scholar]
  8. Benito B, Quintero F. J., Rodrı́guez-Navarro A. 1997; Overexpression of the sodium ATPase of Saccharomyces cerevisiae . Conditions for phosphorylation from ATP and Pi. Biochim Biophys Acta 1328;214–225
    [Google Scholar]
  9. Benito B, Garciadeblas B., Rodrı́guez-Navarro A. 2000; Molecular cloning of the calcium and sodium ATPases in Neurospora crassa . Mol Microbiol35:1079–1088
    [Google Scholar]
  10. Berbee M. L., Taylor J. W. 1993; Dating the evolutionary radiations of the true fungi. Can J Bot71:1114–1127
    [Google Scholar]
  11. Buckel W. 2001; Sodium ion-translocating decarboxylases. Biochim Biophys Acta 1505;15–27
    [Google Scholar]
  12. Camarasa C, Prieto S, Ros R, Salmon J. M., Barre P. 1996; Evidence for a selective and electroneutral K+/H+-exchange in Saccharomyces cerevisiae using plasma membrane vesicles. Yeast12:1301–1313
    [Google Scholar]
  13. Carafoli E. 1994; Biogenesis, plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J8:993–1002
    [Google Scholar]
  14. Carlson M., Botstein D. 1982; Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell28:145–154
    [Google Scholar]
  15. Cunningham K. W., Fink G. R. 1994; Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1 , a homolog of plasma membrane Ca2+ ATPases. J Cell Biol124:351–363
    [Google Scholar]
  16. Dimroth P, Jockel P., Schmid M. 2001; Coupling mechanism of the oxalacetate decarboxylase Na+ pump. Biochim Biophys Acta 1505;1–14
    [Google Scholar]
  17. Doolittle R. F, Feng D.-F, Tsang S, Cho G., Little E. 1996; Determining divergence times of the major kingdoms of living organisms with a protein clock. Science271:470–477
    [Google Scholar]
  18. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem132:6–13
    [Google Scholar]
  19. Garciadeblas B, Benito B., Rodrı́guez-Navarro A. 2001; Plant cells express several stress calcium ATPases but apparently no sodium ATPase. Plant Soil235:181–192
    [Google Scholar]
  20. Garlid K. D. 1996; Cation transport in mitochondria – the potassium cycle. Biochim Biophys Acta1275:123–126
    [Google Scholar]
  21. Gehrig H, Schüßler A., Kluge M. 1996; Geosiphon pyriforme , a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales, evidence by SSU rRNA analysis. J Mol Evol43:71–81
    [Google Scholar]
  22. Geisler M, Axelsen K. B, Harper J. F., Palmgren M. G. 2000; Molecular aspects of higher plant Ca2+-ATPases. Biochim Biophys Acta 1465;52–78
    [Google Scholar]
  23. Ghislain M, Goffeau A, Halachmi D., Eilan Y. 1990; Calcium homeostasis and transport are affected by disruption of cta3 , a novel gene encoding Ca2+-ATPase in Schizosaccharomyces pombe . J Biol Chem265:18400–18407
    [Google Scholar]
  24. Glaser T. A, Utz G. L., Mukkada A. J. 1992; The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. Mol Biochem Parasitol51:9–15
    [Google Scholar]
  25. Hahnenberger M. K, Jia Z., Young P. G. 1996; Functional expression of the Schizosaccharomyces pombe Na+/H+ antiporter gene, sod2 ,in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5031–5036
    [Google Scholar]
  26. Halachmi D, Ghislain M., Eilam Y. 1992; An intracellular ATP-dependent calcium pump within the yeast Schizosaccharomyces pombe , encoded by the gene cta3 . Eur J Biochem207:1003–1008
    [Google Scholar]
  27. Haro R, Garciadeblas B., Rodrı́guez-Navarro A. 1991; A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett291:189–191
    [Google Scholar]
  28. Harrison M. J. 1999; Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J Exp Bot50:1013–1022
    [Google Scholar]
  29. Hass H, Taylor T. N., Remy W. 1994; Fungi from the Lower Devonian Rhynie chert, mycoparasitism. Am J Bot81:29–37
    [Google Scholar]
  30. Heyden N. v. d., Docampo R. 2000; Intracellular pH in mammalian stages of Trypanosoma cruzi is K+-dependent and regulated by H+-ATPases. Mol Biochem Parasitol105:237–251
    [Google Scholar]
  31. Jia Z. P, McCullough N, Martel R, Hemminngsens S., Young P. G. 1992; Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J11:1631–1640
    [Google Scholar]
  32. Keogh R. S, Seoighe C., Wolf K. H. 1998; Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast14:443–457
    [Google Scholar]
  33. Lee M. S. Y. 1999; Molecular clock calibrations and metazoan divergence dates. J Mol Evol49:385–391
    [Google Scholar]
  34. Mitchell P. 1961; Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature191:144–148
    [Google Scholar]
  35. Murata T, Kawano M, Irgarasi K, Yamato I., Kakinuma Y. 2001; Catalytic properties of Na+-translocating V-ATPase in Enterococcus hirae . Biochim Biophys Acta 1505;75–81
    [Google Scholar]
  36. Nicholls D. G., Ferguson S. J. 1997; Bioenergetics 2 San Diego: Academic Press;
    [Google Scholar]
  37. Nishikawa T, Aiba H., Mizuno T. 1999; The cta3 + gene that encodes a cation-transporting P-type ATPase is induced by salt stress under control of the Wis1-Sty1 MAPKK-MAPK cascade in fission yeast. FEBS Lett455:183–187
    [Google Scholar]
  38. Padan E, Venturi M, Gerchman Y., Dover N. 2001; Na+/H+ antiporters. Biochim Biophys Acta 1505;144–157
    [Google Scholar]
  39. Ramı́rez J, Ramı́rez O, Saldaña C, Coria R., Peña A. 1998; A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger. J Bacteriol180:5860–5865
    [Google Scholar]
  40. Redecker D, Kodner R., Graham L. E. 2000; Glomalean fungi from the Ordovician. Science289:1920–1921
    [Google Scholar]
  41. Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S., Frommer W. B. 1995; NTr1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett370:264–268
    [Google Scholar]
  42. Retallack G. J. 1997; Early forest soils and their role in Devonian global change. Science276:583–585
    [Google Scholar]
  43. Retallack G. J., Germán-Heins J. 1994; Evidence from paleosols for the geological antiquity of rain forest. Science265:499–502
    [Google Scholar]
  44. Rodrı́guez-Navarro A. 1971; Inhibition by sodium and lithium in osmophilic yeasts. Antonie Leeuwenhoek37:225–231
    [Google Scholar]
  45. Rodrı́guez-Navarro A. 2000; Potassium transport in fungi and plants. Biochim Biophys Acta 1469;1–30
    [Google Scholar]
  46. Rodrı́guez-Navarro A., Ramos J. 1984; Dual system for potassium transport in Saccharomyces cerevisiae . J Bacteriol159:940–945
    [Google Scholar]
  47. Rodrı́guez-Navarro A, Blatt M. R., Slayman C. L. 1986; A potassium–proton symport in Neurospora crassa . J Gen Physiol87:649–674
    [Google Scholar]
  48. Rozema J. 1996; Biology of halophytes. In Halophytes and Biosaline Agriculture pp17–30 Edited by Choukr-Allah R., Malcolm C. V., Hamdy A.. New York: Marcel Dekker;
    [Google Scholar]
  49. Sambrook J, Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Sancho E. D, Hernández E., Rodrı́guez-Navarro A. 1986; Presumed sexual isolation in yeast populations during production of sherrylike wine. Appl Environ Microbiol51:395–397
    [Google Scholar]
  51. Serrano R. 1988; Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta947:1–28
    [Google Scholar]
  52. Shi H, Ishitani M, Kim C., Zhu J.-K. 2000; The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA97:6896–6901
    [Google Scholar]
  53. Simon L, Bousquet J, Lévesque R. C., Lalonde M. 1993; Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature363:67–69
    [Google Scholar]
  54. Slayman C. L. 1965a; Electrical properties of Neurospora crassa . Effects of external cations on the intracellular potential. J Gen Physiol49:69–92
    [Google Scholar]
  55. Slayman C. L. 1965b; Electrical properties of Neurospora crassa . Respiration and the intracellular potential. J Gen Physiol49:93–116
    [Google Scholar]
  56. Stein W. D. 1995; The sodium pump in the evolution of animal cells. Philos Trans R Soc Lond B349:263–269
    [Google Scholar]
  57. Steuber J. 2001; Na+ translocation by bacterial NADH: quinone oxidoreductase: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505;45–56
    [Google Scholar]
  58. Sychrova H, Ramı́rez J., Peña A. 1999; Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae . FEMS Microbiol Lett171:167–172
    [Google Scholar]
  59. Taylor T. N, Remy W., Hass H. 1994; Allomyces in the Devonian. Nature367:601
    [Google Scholar]
  60. Taylor T. N, Hass H., Kerpt H. 1999; The oldest fossil ascomycetes. Nature399:648
    [Google Scholar]
  61. Wilkinson D. M. 2001; Mycorrhizal evolution. Trends Ecol Evol16:64–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-933
Loading
/content/journal/micro/10.1099/00221287-148-4-933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error