1887

Abstract

utilizes sucrose [glucose-fructose in α(1→2) linkage] and its five isomeric α-D-glucosyl-D-fructoses as energy sources for growth. Sucrose-grown cells are induced for both sucrose-6-phosphate hydrolase (S6PH) and fructokinase (FK), but the two enzymes are not expressed above constitutive levels during growth on the isomeric compounds. Extracts of cells grown previously on the sucrose isomers trehalulose α(1→1), turanose α(1→3), maltulose α(1→4), leucrose α(1→5) and palatinose α(1→6) contained high levels of an NAD plus metal-dependent phospho-α-glucosidase (MalH). The latter enzyme was not induced during growth on sucrose. MalH catalysed the hydrolysis of the 6′-phosphorylated derivatives of the five isomers to yield glucose 6-phosphate and fructose, but sucrose 6-phosphate itself was not a substrate. Unexpectedly, MalH hydrolysed both α- and β-linked stereomers of the chromogenic analogue -nitrophenyl glucoside 6-phosphate. The gene is adjacent to and , which encode an EII(CB) component of the phosphopyruvate-dependent sugar:phosphotransferase system and a putative regulatory protein, respectively. The authors suggest that for , the products of and catalyse the phosphorylative translocation and intracellular hydrolysis of the five isomers of sucrose and of related α-linked glucosides. Genes homologous to and are present in both and the enterohaemorrhagic strain O157:H7. Both these organisms grew well on sucrose, but only exhibited growth on the isomeric compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-843
2002-03-01
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480843a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-843&mimeType=html&fmt=ahah

References

  1. Bouma C. L., Reizer J., Reizer A., Robrish S. A., Thompson J. 1997; 6-Phospho-α-d-glucosidase from Fusobacterium mortiferum : cloning, expression, and assignment to family 4 of the glycosylhydrolases. J Bacteriol 179:4129–4137
    [Google Scholar]
  2. Chen Y.-Y. M., LeBlanc D. J. 1992; Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715. Infect Immun 60:3739–3746
    [Google Scholar]
  3. Dahl M. K. 1997; Enzyme IIGlc contributes to trehalose metabolism in Bacillus subtilis.. FEMS Microbiol Lett 148:233–238 [CrossRef]
    [Google Scholar]
  4. Fouet A., Arnaud M., Klier A., Rapoport G. 1987; Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84:8773–8777 [CrossRef]
    [Google Scholar]
  5. Henrissat B. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  6. Immel S., Lichtenthaler F. W. 1995; Molecular modeling of saccharides. 7. The conformation of sucrose in water: a molecular dynamics approach. Liebigs Ann Chem 1925–1937
    [Google Scholar]
  7. Jahreis K., Lengeler J. W. 1993; Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and d-fructose specific regulons from enteric bacteria. Mol Microbiol 9:195–209 [CrossRef]
    [Google Scholar]
  8. Lanz R., Erni B. 1998; The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J Biol Chem 273:12239–12243 [CrossRef]
    [Google Scholar]
  9. Lengeler J. W., Jahreis K., Wehmeier U. F. 1994; Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 11881–28 [CrossRef]
    [Google Scholar]
  10. Lichtenthaler F. W., Rönninger S. 1990; α-d-Glucopyranosyl-d-fructoses: distribution of furanoid and pyranoid tautomers in water, dimethyl sulphoxide, and pyridine. Studies on ketoses. Part 4. J Chem Soc Perkin Trans 2:1489–1497
    [Google Scholar]
  11. Lichtenthaler F. W., Immel S., Kreis U. 1991; Evolution of the structural representation of sucrose. Starch/Stärke 43:121–132 [CrossRef]
    [Google Scholar]
  12. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  13. Meadow N. D., Fox D. K., Roseman S. 1990; The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497–542 [CrossRef]
    [Google Scholar]
  14. Minami T., Fujiwara T., Ooshima T., Nakajima Y., Hamada S. 1990; Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci. Oral Microbiol Immunol 5:189–194 [CrossRef]
    [Google Scholar]
  15. Nagao Y., Nakada T., Imoto M., Shimamoto T., Sakai S., Tsuda M., Tsuchiya T. 1988; Purification and analysis of the structure of α-galactosidase from Escherichia coli. . Biochem Biophys Res Commun 151:236–241 [CrossRef]
    [Google Scholar]
  16. Ooshima T., Izumitani A., Sobue S., Okahashi N., Hamada S. 1983; Non-cariogenicity of the disaccharide palatinose in experimental dental caries of rats. Infect Immun 39:43–49
    [Google Scholar]
  17. Ooshima T., Izumitani A., Minami T., Fujiwara T., Nakajima Y., Hamada S. 1991; Trehalulose does not induce dental caries in rats infected with mutans streptococci. Caries Res 25:277–282 [CrossRef]
    [Google Scholar]
  18. Peltroche-Llacsahuanga H., Hauk C. J., Kock R., Lampert F., Haase G., Lütticken R. 2001; Assessment of acid production by various human oral micro-organisms when palatinose or leucrose is utilized. J Dent Res 80:378–384 [CrossRef]
    [Google Scholar]
  19. Perna N. T., Burland V. 25 other authors Plunkett G. III 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409:529–533 [CrossRef]
    [Google Scholar]
  20. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phospho enol pyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  21. Raasch C., Streit W., Schanzer J., Bibel M., Gosslar U., Liebl W. 2000; Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2+-, and thiol-dependent α-glucosidase. Extremophiles 4:189–200 [CrossRef]
    [Google Scholar]
  22. Rauch P. J. G., deVos W. M. 1992; Transcriptional regulation of the Tn 5276 -located Lactococcus lactis sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase. Gene 121:55–61 [CrossRef]
    [Google Scholar]
  23. Reid S. J., Rafudeen M. S., Leat N. G. 1999; The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiology 145:1461–1472 [CrossRef]
    [Google Scholar]
  24. Robrish S. A., Thompson J. 1990; Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC 10953. J Bacteriol 172:5714–5723
    [Google Scholar]
  25. Robrish S. A., Oliver C., Thompson J. 1987; Amino acid-dependent transport of sugars by Fusobacterium nucleatum ATCC 10953. J Bacteriol 169:3891–3897
    [Google Scholar]
  26. Robrish S. A., Oliver C., Thompson J. 1991; Sugar metabolism by fusobacteria: regulation of transport, phosphorylation, and polymer formation by Fusobacterium mortiferum ATCC 25557. Infect Immun 59:4547–4554
    [Google Scholar]
  27. Schmid K., Ebner R., Altenbuchner J., Schmitt R., Lengeler J. 1988; Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol 2:1–8 [CrossRef]
    [Google Scholar]
  28. Slee A. M., Tanzer J. M. 1979; Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449. Infect Immun 24:821–828
    [Google Scholar]
  29. Sprenger G. A., Lengeler J. W. 1988; Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol 134:1635–1644
    [Google Scholar]
  30. St Martin E. J., Wittenberger C. L. 1979; Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect Immun 24:865–868
    [Google Scholar]
  31. Sutrina S. L., Reddy P., Reizer J., Saier M. H. Jr 1990; The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589
    [Google Scholar]
  32. Tangney M., Rousse C., Yazdanian M., Mitchell W. J. 1998; Sucrose transport and metabolism in Clostridium beijerinkii NCIMB 8052. J Appl Microbiol 84:914–919 [CrossRef]
    [Google Scholar]
  33. Thompson J., Chassy B. M. 1981; Uptake and metabolism of sucrose by Streptococcus lactis. J Bacteriol 147:543–551
    [Google Scholar]
  34. Thompson J., Nguyen N. Y., Sackett D. L., Donkersloot J. A. 1991; Transposon-encoded sucrose metabolism in Lactococcus lactis . Purification of sucrose-6-phosphate hydrolase and genetic linkage to N 5-(l-1-carboxyethyl)-l-ornithine synthase in strain K1. J Biol Chem 266:14573–14579
    [Google Scholar]
  35. Thompson J., Nguyen N. Y., Robrish S. A. 1992; Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: transport, catabolism, and products. J Bacteriol 174:3227–3235
    [Google Scholar]
  36. Thompson J., Gentry-Weeks C. R., Nguyen N. Y., Folk J. E., Robrish S. A. 1995; Purification from Fusobacterium mortiferum of a 6-phosphoryl- O -α-d-glucopyranosyl: 6-phosphoglucohydrolase that hydrolyzes maltose 6-phosphate and related phospho-α-d-glucosides. J Bacteriol 177:2505–2512
    [Google Scholar]
  37. Thompson J., Pikis A., Ruvinov S. B., Henrissat B., Yamamoto H., Sekiguchi J. 1998; The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-α-glucosidase. Assignment to family 4 of the glycosylhydrolase superfamily. J Biol Chem 273:27347–27356 [CrossRef]
    [Google Scholar]
  38. Thompson J., Ruvinov S. B., Freedberg D. I., Hall B. G. 1999; Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli : characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 181:7339–7345
    [Google Scholar]
  39. Thompson J., Robrish S. A., Pikis A., Brust A., Lichtenthaler F. W. 2001a; Phosphorylation and metabolism of sucrose and its five linkage-isomeric α-d-glucosyl-d-fructoses by Klebsiella pneumoniae. Carbohydr Res 331:149–161 [CrossRef]
    [Google Scholar]
  40. Thompson J., Robrish S. A., Immel S., Lichtenthaler F. W., Hall B. G., Pikis A. 2001b; Metabolism of sucrose and its five linkage-isomeric α-d-glucosyl-d-fructoses by Klebsiella pneumoniae : participation and properties of sucrose-6-phosphate hydrolase and phospho-α-glucosidase. J Biol Chem 276:37415–37425 [CrossRef]
    [Google Scholar]
  41. Titgemeyer F., Jahreis K., Ebner R., Lengeler J. W. 1996; Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein enzyme IIScr of the phosphotransferase system and a sucrose-6-phosphate invertase. Mol Gen Genet 250:197–206
    [Google Scholar]
  42. Van Houte J. 1994; Role of microorganisms in caries etiology. J Dent Res 73:672–681
    [Google Scholar]
  43. Ziesenitz S. C., Siebert G., Imfeld T. 1989; Cariological assessment of leucrose [d-glucopyranosyl-α(1–5)-d-fructopyranose] as a sugar substitute. Caries Res 23:351–357 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-843
Loading
/content/journal/micro/10.1099/00221287-148-3-843
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error