1887

Abstract

Sulfated trehalose glycolipids are among the most characteristic cell wall molecules of virulent strains of . They comprise a family of trehalose-2-sulfate esters with an array of acyl fatty acids at various positions of the trehalose moiety. Although their structure has been well characterized, most of the enzymes involved in their biosynthesis, such as sulfotransferases, are unknown. It is demonstrated here by metabolic labelling with S abundant incorporation into sulfolipids of strains, in comparison to , BCG and . The most abundant sulfolipid, sulfolipid I, is present in virulent strains H37Rv and Erdman, but absent in attenuated H37Ra. Sulfotransferase assays with the donor substrate 3′-phosphoadenosine-5′-[S]phosphosulfonate and whole cell lysates of H37Ra resulted in the synthesis of four major sulfolipids (I, II, IV and VI). A search for sulfotransferase gene sequences in yielded gene , a 981 bp gene slightly homologous (24% identity) to eukaryotic aryl-sulfotransferases. was cloned by PCR and expressed as a 39 kDa recombinant his-tagged protein. The recombinant aryl-sulfotransferase exhibited activity towards the cerebroside glycolipids glucosyl- and galactosylceramide. No activity was detected with sulfatide (3′-sulfated galactosylceramide), suggesting that sulfation of galactosylceramide may occur at C-3 of the galactose. Treatment of sulfated products with ceramide glycanase resulted in the release of S-labelled material showing that sulfation was at the saccharide moiety (galactose or glucose) of the ceramide. Assays with the aryl-sulfotransferase and total H37Ra glycolipids showed one major product corresponding to sulfolipid IV. These results demonstrate that encodes a novel glycolipid sulfotransferase with activity towards typical ceramide glycolipids and mycobacterial trehalose glycolipids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-783
2002-03-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480783a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-783&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Baek M. C., Kim S. K., Kim D. H., Kim B. K., Choi E. C.. 1996; Cloning and sequencing of the Klebsiella K-36 astA gene, encoding an arylsulfate sulfotransferase. Microbiol Immunol40:531–537[CrossRef]
    [Google Scholar]
  3. Bloom B. R., Murray C. J. L.. 1992; Commentary on a reemergent killer. Science257:1055–1064[CrossRef]
    [Google Scholar]
  4. Bourdineaud J. P., Bono J. J., Ranjeva R., Cullimore J. V.. 1995; Enzymatic radiolabelling to a high specific activity of legume lipo-oligosaccharidic nodulation factors from Rhizobium meliloti . Biochem J306:259–264
    [Google Scholar]
  5. Brennan P. J., Nikaido H.. 1995; The envelope of mycobacteria. Annu Rev Biochem64:29–63[CrossRef]
    [Google Scholar]
  6. Brosna J. P., Horan M., Rademacher J. M., Pabst K. M., Pabst M. J.. 1991; Monocyte responses to sulfatide from Mycobacterium tuberculosis inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumour necrosis factor alpha, and altered protein phosphorylation. Infect Immun59:2542–2548
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  8. D’Arcy Hart P. D., Young M. R.. 1988; Polyanionic agents inhibit phagosome-lysosome fusion in cultured macrophages. J Leukoc Biol43:179–182
    [Google Scholar]
  9. Dubos R. J., Middlebrook G.. 1948; Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc Pulm Dis58:698–699
    [Google Scholar]
  10. Dye C., Scheele S., Dolin P., Pathania V., Raviglione M. C.. 1999; Consensus statement: global burden of tuberculosis: estimated incidence, prevalence, and mortality by country: WHO global surveillance and monitoring project. JAMA (J Am Med Assoc)282:677–686[CrossRef]
    [Google Scholar]
  11. Ehrhardt D. W., Atkinson E. M., Faull K. F., Freedberg D. I., Sutherlin D. P., Armstrong R., Long S. R.. 1995; In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J Bacteriol177:6237–6245
    [Google Scholar]
  12. Falany C. N.. 1997; Sulfation and sulfotransferases 3: enzymology of human cytosolic sulfotransferases. FASEB J11:206–216
    [Google Scholar]
  13. Fujiwara N.. 1997; Distribution of antigenic glycolipids among Mycobacterium tuberculosis strains and their contribution to virulence. Kekkaku72:193–205
    [Google Scholar]
  14. Gangadharam P. R. J., Cohn M. L., Middlebrook G.. 1963; Infectivity, pathogenicity and sulpholipid fraction of some Indian and British strains of tubercle bacilli. Tubercle44:452–455[CrossRef]
    [Google Scholar]
  15. Goren M. B.. 1970a; Sulfolipid I of Mycobacterium tuberculosis , strain H37Rv.I. Purification and properties. Biochim Biophys Acta 120:116–126
    [Google Scholar]
  16. Goren M. B.. 1970b; Sulfolipid I of Mycobacterium tuberculosis , strain H37Rv.II. Structural studies. Biochim Biophys Acta 120:127–138
    [Google Scholar]
  17. Goren M. B.. 1977; Phagocyte lysosomes: interactions with infectious agents, phagosomes and experimental perturbations in function. Annu Rev Microbiol31:507–533[CrossRef]
    [Google Scholar]
  18. Goren M. B.. 1984; Biosynthesis and structures of phospholipids and sulfatides. In The Mycobacteria: a Sourcebook, Part A Edited by Kubica G. P.. Wayne L. G.. New York: Marcel Dekker;
    [Google Scholar]
  19. Goren M. B., Brokl O., Schaefer W. B.. 1974; Lipids of putative relevance to virulence in Mycobacterium tuberculosis : correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect Immun9:142–149
    [Google Scholar]
  20. Goren M. B., Young M. R., Armstrong J. A., D’Arcy Hart P. D.. 1976; Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis . Proc Natl Acad Sci USA73:2510–2514[CrossRef]
    [Google Scholar]
  21. Goren M. B., Grange J. M., Aber V. R., Allen B. W., Mitchison D. A.. 1982; Role of lipid content and hydrogen peroxide susceptibility in determining the guinea-pig virulence of Mycobacterium tuberculosis . Br J Exp Pathol63:693–700
    [Google Scholar]
  22. Goren M. B., Vatter A. E., Fiscus J.. 1987; Polyanionic agents do not inhibit phagosome-lysosome fusion in cultured macrophages. J Leukoc Biol41:122–129
    [Google Scholar]
  23. Hanin M., Jabbouri S., Quesada-Vincens D., Freiberg C., Perret X., Prome J. C., Broughton W. J., Fellay R.. 1997; Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE , a new host-specificity gene. Mol Microbiol24:1119–1129[CrossRef]
    [Google Scholar]
  24. Luquin M., Papa F., David H. L.. 1992; Identification of sulpholipid I by thin-layer chromatography in the rapid identification of Mycobacterium tuberculosis . Res Microbiol143:225–227[CrossRef]
    [Google Scholar]
  25. Middlebrook G., Coleman C., Schaefer W. B.. 1959; Sulfolipid from virulent tubercle bacilli. Proc Natl Acad Sci U S A45:1801–1804[CrossRef]
    [Google Scholar]
  26. Mitchison D. A.. 1964; The virulence of tubercle bacilli from patients with pulmonary tuberculosis in India and other countries. Bull Int Union Tuberc35:287–306
    [Google Scholar]
  27. Morrison I. M.. 1994; Glycolipids. In Carbohydrate Analysis: a Practical Approach pp295–317 Edited by Chaplin M. F.. Kennedy J. F.. New York: Oxford University Press;
    [Google Scholar]
  28. Pabst M. J., Gross J. M., Brozna J. P., Goren M. B.. 1988; Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis . J Immunol140:634–640
    [Google Scholar]
  29. Philipp W. J., Poulet S., Eiglmeier K.. 7 other authors 1996; An integrated map of the genome of tubercle bacillus , Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA93:3132–3137[CrossRef]
    [Google Scholar]
  30. Quesada-Vincens D., Hanin M., Broughton W. J., Jabbouri S.. 1998; In vitro sulfotransferase activity of NoeE, a nodulation protein of Rhizobium sp. NGR234. Mol Plant–Microbe Interact11:592–600[CrossRef]
    [Google Scholar]
  31. Riley L. W.. 1996; Phagocytosis of M. tuberculosis . In Tuberculosis pp281–289 Edited by Room W. N.. Gray S.. Boston,MA: Little & Brown;
    [Google Scholar]
  32. Roche P., Debelle F., Maillet F., Lerouge P., Faucher C., Truchet G., Denarie J., Prome J. C.. 1991; Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell67:1131–1143[CrossRef]
    [Google Scholar]
  33. Rost B.. 1996; PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol266:525–539
    [Google Scholar]
  34. Schultze M., Staehelin C., Rohrig H., John M., Schmidt J., Kondorosi E., Schell J., Kondorosi A.. 1995; In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci USA92:2706–2709[CrossRef]
    [Google Scholar]
  35. Sirakova T. D., Thirumala A. K., Dubey V. S., Sprecher H., Kolattukudy P. E.. 2001; The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem276:16833–16839[CrossRef]
    [Google Scholar]
  36. Varin L., Marsolais F., Richard M., Rouleau M.. 1997; Sulfation and sulfotransferases. 6. Biochemistry and molecular biology of plant sulfotransferases. FASEB J11:517–525
    [Google Scholar]
  37. Weinshilboum R. M., Otterness D. M., Aksoy I. A., Wood T. C., Her C., Raftogianis R. B.. 1997; Sulfotransferase molecular biology: cDNAs and genes. FASEB J11:3–14
    [Google Scholar]
  38. Zhang L., Goren M. B., Holzer T. J., Andersen B. R.. 1988; Effect of Mycobacterium tuberculosis -derived sulfolipid I on human phagocytic cells. Infect Immun56:2876–2883
    [Google Scholar]
  39. Zhang L., English D., Andersen B. B.. 1991; Activation of human neutrophils by Mycobacterium tuberculosis -derived sulfolipid-I. J Immunol146:2730–2736
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-783
Loading
/content/journal/micro/10.1099/00221287-148-3-783
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error