1887

Abstract

The antiterminator LacT regulates the expression of the lactose operon in and its activity is controlled by EII and common PTS elements. LacT shows the two conserved domains (PRD-I and PRD-II) characteristic of the BglG antiterminator family that are implicated in the regulation of their activity, possibly by phosphorylation of conserved histidines. By site-directed mutagenesis of LacT, four histidines (His-101, His-159 in PRD-I and His-210, His-273 in PRD-II) were replaced by alanine or aspartate, mimicking non-phosphorylated and phosphorylated forms, respectively. These constructions were used to complement Δ and Δ mutants. strains (Δ) carrying the replacement of His-101 or His-159 by Ala showed phospho-β-galactosidase activity in absence of the inducer (lactose), indicating that these amino acids, located in PRD-I, are essential for EII-dependent induction of the operon, possibly by dephosphorylation. Interestingly, these mutations rendered LacT thermosensitive. Moreover, expression of H210A and H273A (PRD-II) mutations in Δ showed that these two histidyl residues could have a role in LacT-dependent carbon catabolite repression (CCR) of this system. Overexpression of LacT in a background rendered the operon insensitive to CCR, but it was still sensitive to lactose induction. This suggests that the transfer of phosphate groups from PTS elements, which controls these two regulatory processes (CCR and substrate induction), could have different affinity for PRD-I and PRD-II histidines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-695
2002-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480695a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-695&mimeType=html&fmt=ahah

References

  1. Albert, T. ( 1989; ). Mutational effects on protein stability. Annu Rev Biochem 58, 765-798.[CrossRef]
    [Google Scholar]
  2. Alpert, C.-A. & Chassy, B. M. ( 1988; ). Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Gene 62, 277-288.[CrossRef]
    [Google Scholar]
  3. Alpert, C.-A. & Chassy, B. M. ( 1990; ). Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. J Biol Chem 265, 22561-22568.
    [Google Scholar]
  4. Alpert, C.-A. & Siebers, U. ( 1997; ). The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J Bacteriol 179, 1555-1562.
    [Google Scholar]
  5. Amster-Choder, O. & Wright, A. ( 1992; ). Modulation of dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257, 1395-1397.[CrossRef]
    [Google Scholar]
  6. Amster-Choder, O. & Wright, A. ( 1993; ). Transcriptional regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator. J Cell Biochem 51, 83-90.[CrossRef]
    [Google Scholar]
  7. Amster-Choder, O., Houman, F. & Wright, A. ( 1989; ). Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 58, 847-855.[CrossRef]
    [Google Scholar]
  8. Arnaud, M., Vary, P., Zagorec, M., Klier, A., Débarbouillé, M., Postma, P. & Rapoport, G. ( 1992; ). Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174, 3161-3170.
    [Google Scholar]
  9. Arnaud, M., D barbouill , M., Rapoport, G., Saier, M. H., Jr & Reizer, J. ( 1996; ). In vitro reconstitution of transcriptional antiterminator by the SacT and SacY proteins of Bacillus subtilis. J Biol Chem 271, 18966–18972.
    [Google Scholar]
  10. Aymerich, S. & Steinmetz, M. ( 1992; ). Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci USA 89, 10410-10414.[CrossRef]
    [Google Scholar]
  11. Bachem, S. & Stülke, J. ( 1998; ). Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 180, 5319-5326.
    [Google Scholar]
  12. Bardowski, J., Ehrlich, S. D. & Chopin, A. ( 1994; ). BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in β-glucoside utilization in Lactococcus lactis. J Bacteriol 176, 5681-5685.
    [Google Scholar]
  13. Boss, A., Nussbaum-Shochat, A. & Amster-Choder, O. ( 1999; ). Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J Bacteriol 181, 1755-1766.
    [Google Scholar]
  14. Chassy, B. M. & Thompson, J. ( 1983; ). Regulation of lactose-phosphoenolpyruvate-dependent-phosphotransferase system and β-d-phosphogalactosidase galactohydrolase activities in Lactobacillus casei. J Bacteriol 154, 1195-1203.
    [Google Scholar]
  15. Chen, Q., Engelberg-Kulka, H. & Amster-Choder, O. ( 1997; ). The localization of the phosphorylation site of BglG, the response regulator of the Escherichia coli bgl sensory system. J Biol Chem 272, 17263-17268.[CrossRef]
    [Google Scholar]
  16. Chen, Q., Postma, P. W. & Amster-Choder, O. ( 2000; ). Dephosphorylation of Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorylation. J Bacteriol 182, 2033-2036.[CrossRef]
    [Google Scholar]
  17. Crutz, A. M. & Steinmetz, M. ( 1992; ). Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. J Bacteriol 174, 6087-6095.
    [Google Scholar]
  18. Crutz, A. M., Steinmetz, M., Aymerich, S., Richter, R. & Le Coq, D. ( 1990; ). Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 172, 1043-1050.
    [Google Scholar]
  19. Débarbouillé, M., Arnaud, M., Fouet, A., Klier, A. & Rapoport, G. ( 1990; ). The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172, 3966-3973.
    [Google Scholar]
  20. de Vos, W. M. & Vaughan, E. E. ( 1994; ). Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev 15, 217-237.[CrossRef]
    [Google Scholar]
  21. Görke, B. & Rak, B. ( 1999; ). Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18, 3370-3379.[CrossRef]
    [Google Scholar]
  22. Gosalbes, M. J., Monedero, V., Alpert, C.-A. & Pérez-Martı́nez, G. ( 1997; ). Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148, 83-89.[CrossRef]
    [Google Scholar]
  23. Gosalbes, M. J., Monedero, V. & Pérez-Martı́nez, G. ( 1999; ). Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 181, 3928-3934.
    [Google Scholar]
  24. Henstra, S. A., Duurkens, R. H. & Robillard, G. T. ( 2000; ). Multiple phosphorylation events regulate the activity of the mannitol transcriptional regulator MtlR of the Bacillus stearothermophilus phosphoenolpyruvate-dependent mannitol phosphotransferase system. J Biol Chem 10, 7037-7044.
    [Google Scholar]
  25. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using polymerase chain reaction. Gene 71, 51-59.
    [Google Scholar]
  26. Houman, F., Diaz-Torres, M. R. & Wright, A. ( 1990; ). Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 62, 1153-1163.[CrossRef]
    [Google Scholar]
  27. Idelson, M. & Amster-Choder, O. ( 1998; ). SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J Bacteriol 180, 660-666.
    [Google Scholar]
  28. Krüger, S. & Hecker, M. ( 1995; ). Regulation of the putative bglPH operon for aryl-β-glucoside utilization in Bacillus subtilis. J Bacteriol 177, 5590-5597.
    [Google Scholar]
  29. Krüger, S., Gertz, S. & Hecker, M. ( 1996; ). Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178, 2637-2644.
    [Google Scholar]
  30. Le Coq, D., Lindner, C., Krüger, S., Steinmetz, M. & Stülke, J. ( 1995; ). New β-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177, 1527-1535.
    [Google Scholar]
  31. Leloup, L., Ehrlich, S. D., Zagorec, M. & Morel-Deville, F. ( 1997; ). Single crossing-over integration in the Lactobacillus sake chromosome and insertional inactivation of the pts and the lacI genes. Appl Environ Microbiol 63, 2117-2123.
    [Google Scholar]
  32. Lindner, C., Galinier, A., Hecker, M. & Deutscher, J. ( 1999; ). Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 31, 995-1006.[CrossRef]
    [Google Scholar]
  33. Mahadevan, S. & Wright, A. ( 1987; ). A bacterial gene involved in transcription antitermination: regulation at a Rho-independent terminator in bgl operon of E. coli. Cell 50, 485-494.[CrossRef]
    [Google Scholar]
  34. Mahadevan, S., Reynolds, A. E. & Wright, A. ( 1987; ). Positive and negative regulation of bgl operon in Escherichia coli. J Bacteriol 169, 2570-2578.
    [Google Scholar]
  35. Marasco, R., Salatiello, I., de Felipe, M. & Sacco, M. ( 2000; ). A physical and functional analysis of the newly-identified bglGPT operon of Lactobacillus plantarum. FEMS Microbiol Lett 186, 269-273.[CrossRef]
    [Google Scholar]
  36. Martin-Verstraete, I., Stülke, J., Klier, A. & Rapoport, G. ( 1995; ). Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177, 6919-6927.
    [Google Scholar]
  37. Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G. & Deutscher, J. ( 1998; ). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28, 293-303.[CrossRef]
    [Google Scholar]
  38. Monedero, V., Gosalbes, M. J. & Pérez-Martı́nez, G. ( 1997; ). Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179, 6657-6664.
    [Google Scholar]
  39. Pérez-Martı́nez, G., Kok, J., Venema, G., van Dijl, J. M., Smith, H. & Bron, S. ( 1992; ). Protein export elements from Lactococcus lactis. Mol Gen Genet 234, 401-411.[CrossRef]
    [Google Scholar]
  40. Porter, E. V. & Chassy, B. M. ( 1988; ). Nucleotide sequence of the β-d-phospho-galactosidase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene 62, 263-276.[CrossRef]
    [Google Scholar]
  41. Posno, M., Leer, R. J., van Luijk, N., van Giezen, M. J. F., Heuvelmans, P. T. H. M., Lokman, B. C. & Pouwels, P. H. ( 1991; ). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57, 1822-1828.
    [Google Scholar]
  42. Rutberg, B. ( 1997; ). Antitermination of transcription of catabolic operons. Mol Microbiol 23, 413-421.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Schnetz, K. & Rak, B. ( 1988; ). Regulation of bgl operon of Escherichia coli by transcriptional antitermination. EMBO J 7, 3271-3277.
    [Google Scholar]
  45. Schnetz, K. & Rak, B. ( 1990; ). β-Glucoside permease represses the bgl operon of E. coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme II, the key element in catabolic control. Proc Natl Acad Sci USA 87, 5074-5078.[CrossRef]
    [Google Scholar]
  46. Schnetz, K., Toloczki, C. & Rak, B. ( 1987; ). β-Glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169, 2579-2590.
    [Google Scholar]
  47. Schnetz, K., Stülke, J., Gertz, S., Krüger, S., Krieg, M., Hecker, M. & Rak, B. ( 1996; ). LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178, 1971-1979.
    [Google Scholar]
  48. Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A. & Rapoport, G. ( 1997; ). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25, 65-78.[CrossRef]
    [Google Scholar]
  49. Stülke, J., Arnaud, M., Rapoport, G. & Martin-Verstraete, I. ( 1998; ). PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28, 865-874.[CrossRef]
    [Google Scholar]
  50. Taranto, M. P. (1999). Reducción de colesterol e hidrólisis de sales biliares por bacterias lácticas. PhD thesis, Universidad Nacional de Tucumán, Argentina.
  51. Tobisch, S., Stülke, J. & Hecker, M. ( 1999; ). Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 181, 4995-5003.
    [Google Scholar]
  52. Tortosa, P., Aymerich, A., Lindner, C., Saier, M. H.Jr, Reizer, J. & Le Coq, D. ( 1997; ). Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272, 17230-17237.[CrossRef]
    [Google Scholar]
  53. Van Tilbeurgh, H., Le Coq, D. & Declerck, N. ( 2001; ). Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator. EMBO J 20, 3789-3799.[CrossRef]
    [Google Scholar]
  54. Viana, R., Monedero, V., Dossonnet, V., Vadeboncoeur, Ch., Pérez-Martı́nez, G. & Deutscher, J. ( 2000; ). Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36, 570-584.
    [Google Scholar]
  55. Zukowski, M., Miller, L., Cosgwell, P., Chen, K., Aymerich, A. & Steinmetz, M. ( 1990; ). Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene 90, 153-155.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-695
Loading
/content/journal/micro/10.1099/00221287-148-3-695
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error