1887

Abstract

In encodes the principal leucyl tRNA for translation of UUA codons and controls pigmented antibiotic production by the presence of TTA codons in the genes encoding the pathway-specific activators of actinorhodin and undecylprodigiosin biosynthesis. In the gene encoding the pathway-specific activator of both cephamycin C and clavulanic acid production, , also contains a TTA codon and was expected to exhibit -dependence. A cloned DNA fragment containing a sequence showing 91% identity to the -encoded tRNA was able to restore antibiotic production and sporulation to mutants of and the closely related . A null mutation of the gene in resulted in the expected sporulation defective phenotype, but unexpectedly had no effect on antibiotic production. Transcript analysis showed no difference in the levels of transcripts in the wild-type and mutant strains, ruling out any effect of elevated levels of the mRNA. Furthermore, when compared to the wild-type strain, the mutant showed no differences in the levels of CcaR, suggesting that the single TTA codon in is mistranslated efficiently. The role of codon context in dependence is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-643
2002-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480643a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-643&mimeType=html&fmt=ahah

References

  1. Aharonowitz, Y. & Demain, A. L. ( 1978; ). Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother 14, 159-164.[CrossRef]
    [Google Scholar]
  2. Alexander, D. C. (1998). Regulation of cephamycin biosynthesis in Streptomyces clavuligerus. PhD thesis, University of Alberta, Canada.
  3. Alexander, D. C. & Jensen, S. E. ( 1998; ). Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180, 4068-4079.
    [Google Scholar]
  4. Bailey, C. R. & Winstanley, D. J. ( 1986; ). Inhibition of restriction in Streptomyces clavuligerus by heat treatment. J Gen Microbiol 132, 2945-2947.
    [Google Scholar]
  5. Belcourt, M. F. & Farabaugh, P. J. ( 1990; ). Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62, 339-352.[CrossRef]
    [Google Scholar]
  6. Bibb, M. J., Janssen, G. R. & Ward, J. M. ( 1985; ). Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38, 215-226.[CrossRef]
    [Google Scholar]
  7. Bierman, M., Logan, R., O’Brien, K., Seno, E. T., Rao, N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49.[CrossRef]
    [Google Scholar]
  8. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein–dye binding. Anal Biochem 72, 248-254.[CrossRef]
    [Google Scholar]
  9. Brierley, I., Jenner, A. J. & Inglis, S. C. ( 1992; ). Mutational analysis of the ‘slippery-sequence’ component of a coronavirus ribosomal frameshifting signal. J Mol Biol 227, 463-479.[CrossRef]
    [Google Scholar]
  10. Burland, V., Plunkett, G.III, Sofia, H. J., Daniels, D. L. & Blattner, F. R. ( 1995; ). Analysis of the Escherichia coli genome. VI. DNA sequence of the region from 92·8 through 100 minutes. Nucleic Acids Res 23, 2105-2119.[CrossRef]
    [Google Scholar]
  11. Chater, K. F., Bruton, C. J., King, A. A. & Suárez, J. E. ( 1982; ). The expression of Streptomyces and Escherichia coli drug resistance determinants cloned into the Streptomyces phage ϕC31. Gene 19, 21-32.[CrossRef]
    [Google Scholar]
  12. Chen, G.-F. & Inouye, M. ( 1990; ). Suppression of the negative effect of minor arginine codons on gene expression: preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res 18, 1465-1473.[CrossRef]
    [Google Scholar]
  13. Cormack, B. P., Valdivia, R. H. & Falkow, S. ( 1996; ). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33-38.[CrossRef]
    [Google Scholar]
  14. Decker, H. & Hutchinson, C. R. ( 1993; ). Transcriptional analysis of the Streptomyces glaucescens tetracenomycin C biosynthesis gene cluster. J Bacteriol 175, 3887-3892.
    [Google Scholar]
  15. Distler, J., Ebert, A., Mansouri, K., Pissowotzki, K., Stockmann, M. & Piepersberg, W. ( 1987; ). Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res 15, 8041-8056.[CrossRef]
    [Google Scholar]
  16. Doran, J. L., Leskiw, B. K., Aippersbach, S. & Jensen, S. E. ( 1990; ). Isolation and characterization of a β-lactamase-inhibitory protein from Streptomyces clavuligerus, and cloning and analysis of the corresponding gene. J Bacteriol 172, 4909-4918.
    [Google Scholar]
  17. Epp, J. K., Burgett, S. G. & Schoner, B. E. ( 1987; ). Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53, 73-83.[CrossRef]
    [Google Scholar]
  18. Farabaugh, P. J., Zhao, H. & Vimaladithan, A. ( 1993; ). A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell 74, 93-103.[CrossRef]
    [Google Scholar]
  19. Fernández-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. ( 1991; ). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA transfer RNA gene of Streptomyces. Cell 66, 769-780.[CrossRef]
    [Google Scholar]
  20. Garda, A. L., Fernandez-Abalos, J. M., Sanchez, P., Ruiz-Arribas, A. & Santamaria, R. I. ( 1997; ). Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8. Biochem J 324, 403-411.
    [Google Scholar]
  21. Giebelhaus, L. A., Frost, L., Lanka, E., Gormley, E. P., Davies, J. E. & Leskiw, B. ( 1996; ). The Tra2 core of the IncPα plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J Bacteriol 178, 6378-6381.
    [Google Scholar]
  22. Gramajo, H. C., Takano, E. & Bibb, M. J. ( 1993; ). Stationary phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7, 837-845.[CrossRef]
    [Google Scholar]
  23. Guthrie, E. P., Flaxman, C. S., White, J., Hodgson, D. A., Bibb, M. J. & Chater, K. F. ( 1998; ). A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144, 727-738.[CrossRef]
    [Google Scholar]
  24. Hollingshead, S. & Vapnek, D. ( 1985; ). Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13, 17-30.[CrossRef]
    [Google Scholar]
  25. Hopwood, D. A., Kieser, T., Wright, H. M. & Bibb, M. J. ( 1983; ). Plasmids, recombination and chromosomal mapping in Streptomyces lividans 66. J Gen Microbiol 129, 2257-2269.
    [Google Scholar]
  26. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation.
  27. Jacks, T., Madhanik, H. D., Masiarz, F. R. & Varmus, H. E. ( 1988; ). Signals for ribosomal frameshifting in the Rous Sarcoma Virus gag-pol region. Cell 55, 447-458.[CrossRef]
    [Google Scholar]
  28. Jensen, S. E., Westlake, D. W. & Wolfe, S. ( 1982; ). Cyclization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine to penicillins by cell-free extracts of Streptomyces clavuligerus. J Antibiot 35, 483-490.[CrossRef]
    [Google Scholar]
  29. Kalnins, A., Otto, K., Ruther, U. & Muller-Hill, B. ( 1983; ). Sequence of the lacZ gene of Escherichia coli. EMBO J 2, 593-597.
    [Google Scholar]
  30. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.
  31. Lawlor, E. J., Baylis, H. A. & Chater, K. F. ( 1987; ). Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1, 1305-1310.[CrossRef]
    [Google Scholar]
  32. Leskiw, B. K., Bibb, M. J. & Chater, K. F. ( 1991a; ). The use of a rare codon specifically during development. Mol Microbiol 5, 2861-2867.[CrossRef]
    [Google Scholar]
  33. Leskiw, B. K., Lawlor, E. J., Fernandez-Abalos, J. M. & Chater, K. F. ( 1991b; ). TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci USA 88, 2461-2465.[CrossRef]
    [Google Scholar]
  34. Leskiw, B. K., Mah, R., Lawlor, E. J. & Chater, K. F. ( 1993; ). Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 175, 1995-2005.
    [Google Scholar]
  35. Lindsley, D. & Gallant, J. ( 1993; ). On the directional specificity of ribosome frameshifting at a ‘hungry’ codon. Proc Natl Acad Sci USA 90, 5469-5473.[CrossRef]
    [Google Scholar]
  36. MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H. & MacNeil, T. ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61-68.[CrossRef]
    [Google Scholar]
  37. McCue, L. A., Kwak, J., Babcock, M. J. & Kendrick, K. E. ( 1992; ). Molecular analysis of sporulation in Streptomyces griseus. Gene 115, 173-179.[CrossRef]
    [Google Scholar]
  38. Passantino, R., Puglia, A. M. & Chater, K. F. ( 1991; ). Additional copies of the actII regulatory gene induce actinorhodin production in pleiotropic bld mutants of Streptomyces coelicolor A3(2). J Gen Microbiol 137, 2059-2064.[CrossRef]
    [Google Scholar]
  39. Perez-Llarena, F. J., Liras, P., Rodriguez-Garcia, A. & Martin, J. F. ( 1997; ). A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179, 2053-2059.
    [Google Scholar]
  40. Reading, C. & Cole, M. ( 1977; ). Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11, 852-857.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Sanchez, L. & Brana, A. F. ( 1996; ). Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus. Microbiology 142, 1209-1220.[CrossRef]
    [Google Scholar]
  43. Sedlmeier, R. & Schmieger, H. ( 1990; ). Nucleotide sequences of tRNA genes in Streptomyces lividans 66. Nucleic Acids Res 18, 4027.[CrossRef]
    [Google Scholar]
  44. Sedlmeier, R., Linti, G., Gregor, K. & Schmieger, H. ( 1993; ). Sequences of tRNA-encoding genes and associated open reading frames of Streptomyces lividans. Gene 132, 125-130.[CrossRef]
    [Google Scholar]
  45. Servin-Gonzalez, L., Castro, C., Perez, C., Rubio, M. & Valdez, F. ( 1997; ). bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator. J Bacteriol 179, 7816-7826.
    [Google Scholar]
  46. Shpaer, E. ( 1986; ). Constraints on codon context in Escherichia coli genes: their possible role in modulation the efficiency of translation. J Mol Biol 188, 555-564.[CrossRef]
    [Google Scholar]
  47. Sorensen, M. A., Kurland, C. G. & Pedersen, S. ( 1989; ). Codon usage determines translation rate in Escherichia coli. J Mol Biol 207, 365-377.[CrossRef]
    [Google Scholar]
  48. Sorensen, M. A., Jensen, K. F. & Pedersen, S. ( 1990; ). Measurement of translation rates in vivo at individual codons and implication of these rate differences for gene expression. NATO ASI Ser H 49, 207-216.
    [Google Scholar]
  49. Sprinzl, M., Dank, N., Nock, S. & Schon, A. ( 1991; ). Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 19, 2127-2171.[CrossRef]
    [Google Scholar]
  50. Staskawicz, B., Dahlbeck, D., Keen, N. & Napoli, C. ( 1987; ). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169, 5789-5794.
    [Google Scholar]
  51. Stuttard, C. ( 1982; ). Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 128, 115-121.
    [Google Scholar]
  52. Takai, K., Horie, N., Yamaizumi, Z., Nishimura, S., Miyazawa, T. & Yokayama, S. ( 1994; ). Recognition of UUN codons by two leucine tRNA species from Escherichia coli. FEBS Lett 344, 31-34.[CrossRef]
    [Google Scholar]
  53. Trepanier, N. K. (1999). Analysis of the bldA tRNA gene of Streptomyces clavuligerus: implications for mistranslation of TTA codons. PhD thesis: University of Alberta.
  54. Trepanier, N. K., Nguyen, G. D., Leedell, P. J. & Leskiw, B. K. ( 1997; ). Use of polymerase chain reaction to identify a leucyl tRNA in Streptomyces coelicolor. Gene 193, 59-63.[CrossRef]
    [Google Scholar]
  55. Ueda, Y., Kumagai, I. & Miura, K. ( 1992; ). The effects of a unique D-loop structure of a minor tRNALeu from Streptomyces on its structural stability and amino acid accepting activity. Nucleic Acids Res 20, 3911-3917.[CrossRef]
    [Google Scholar]
  56. Ueda, Y., Taguchi, S., Nishiyama, K., Kumagai, I. & Miura, K. ( 1993; ). Effect of a rare leucine codon, TTA on expression of a foreign gene in Streptomyces lividans. Biochim Biophys Acta 1172, 262-266.[CrossRef]
    [Google Scholar]
  57. Vieira, J. & Messing, J. ( 1987; ). Production of single-stranded plasmid DNA. Methods Enzymol 153, 3-11.
    [Google Scholar]
  58. Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J., Buttner, M. J. & Bibb, M. J. ( 1986; ). Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203, 468-478.[CrossRef]
    [Google Scholar]
  59. White, J. & Bibb, M. ( 1997; ). bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179, 627-633.
    [Google Scholar]
  60. Williams, J. G. & Mason, P. J. (1985). Hybridization in the Analysis of RNA. Oxford: IRL Press.
  61. Zalacain, M., Gonzalez, A., Guerrero, M. C., Mattaliano, R. J., Malpartida, F. & Jimenez, A. ( 1986; ). Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucleic Acids Res 14, 1565-1581.[CrossRef]
    [Google Scholar]
  62. Zoller, M. J. & Smith, M. ( 1987; ). Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods Enzymol 154, 329-349.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-643
Loading
/content/journal/micro/10.1099/00221287-148-3-643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error